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«=> perfect secure communication
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Short keys generate long (pseudo)-random
correlations, enabling secure communication
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Secure Computation

Beaver, 1995
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Long, random ‘more complex’ Correlatlon

«=> perfect secure computation
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«=> perfect secure computation
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Why would it be so cool?

Phase 1: Phase 2: Phase 3:

tiny’ interactive local extraction fast and information-
protocol procedure theoretic

preprocessing online

* Reduced overall communication
 ‘'On demand’ (or ‘business-card’) MPC

* Hiding communication pattern



Previous Works

GI199: multiparty linear correlations
CDI05: generalization (pseudorandom Shamir)
HIJKR16: arbitrary correlations, from iO

BCGIO17: additive correlations, from HSS

Scho18: relaxed form of additive correlations, key-
homomorphic PRF



Previous Works

GI199: multiparty linear correlations
CDI05: generalization (pseudorandom Shamir)
HIJKR16: arbitrary correlations, from iO

BCGIO17: additive correlations, from HSS

Scho18: relaxed form of additive correlations, key-
homomorphic PRF

Non-linear, 2-party: no efficient solution
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ODblivious Linear Evaluation
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- Natural generalization of OT to large fields
- Enables secure computation of arithmetic circuits
- ‘Dream goal’ of correlation compression
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Vector Oblivious Linear Evaluation
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- Generalizes OLE the same way string-OT generalizes OT
- Still enjoys many cool applications for secure computation
(more details later)



This Work: Efficient Compression for
Vector-OLE Correlation
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This Work: Efficient Compression for
Vector-OLE Correlation

% Security:
- Given K1, cannot distinguish
(a,b) from random subject to
G1(K1) = ax+b
% - Given KO, learn nothing about x

GO(KO) Our Result: G1(K1)
An efficient* VOLE generator over

any field under LPN
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Applications

‘Direct’ applications:

» Rate-1/2 Vector-OLE (better rate from LPN would be a breakthrough)
e Large fan-out MPC
« Matrix-vector multiplication

* Nearest neighbor search

‘High-end’ applications:
* Constant-depth arithmetic computation via arithmetic garbling

* Reusable non-interactive zero-knowledge in the preprocessing model
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Our Method

LPN
1. Sparse VOLE-generator ——> pseudorandom VOLE-generator
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Sparse Vector-OLE Generator

2. Multi-point function secret sharing——> sparse vector-OLE generator

e Function Secret Sharing secretly shares a function between
two parties

 FSSis hard in general

* For restricted functions (point functions), it can be done very
efficiently from symmetric primitives [Gl14, BGl15, BGI16]

* FSS for k-point functions is basically k-sparse VOLE-
generator
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Improvements

- Arbitrary stretch from dual-LPN

- Linear-time evaluation from batch codes

- Improvements from LPN-friendly linear codes
- Numerous heuristic optimizations
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Improvements

- Arbitrary stretch from dual-LPN

- Linear-time evaluation from batch codes

- Improvements from LPN-friendly linear codes
- Numerous heuristic optimizations

Efficiency (estimation): a million entries over a 128-
bit field in 26 milliseconds (one core, standard laptop)
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Conclusion

Even for direct VOLE application, very competitive with
alternative approaches

« ADINZ17: ~5us/OLE (asymptotic rate 1/3)
o Qur work: ~50ns/OLE (asymptotic rate 1/2)

Distributed setup can be made very efficiently [Ds17]: for 1
million entries and 128-bit field, 69Kb and 34ms

Unigue communication pattern (local decompression)

Large number of applications
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Thank you for your attention

Questions?



