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The Quest for MPC with Low Communication

Secure computation:

Yao (1986), GMW (1987):
communication proportional
to the size of the circuit

Yy — f(aj()v 2171)

Does secure computation inherently require so much communication?

This work: revisiting this question for MPC with correlated randomness
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Generates and distributes Correlaied random coins,
independent of the inputs of the parties

Beaver (1991): this allows for
iInformation-theoretically secure
MPC in the online phase

[too many papers to cite them all]
(2011 - 2018): this allows for
concretely efficient MPC
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Our Result

For any layered boolean circuit C' of size s with n inputs and m outputs,
there exists an N-party protocol which securely evaluates C' in the (function-
dependent) correlated randomness model against malicious parties, with adap-
tive security, and without honest majority, using a polynomial number of cor-

related random coins and with communication
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there exists an N-party protocol which securely evaluates C' in the (function-
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tive security, and without honest majority, using a polynomial number of cor-

related random coins and with communication

Oln+N-|mH- ° .
log log s

+ Extensions to arithmetic circuits, function-independent
preprocessing, and tall-and-skinny circuits

We’'ll focus on 2 parties & semi-honest security here
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Construction

Layered boolean circuit, size s, depth d, width w, n inputs and m outputs

Let f be a c-local function, with input of size n and output of size m. Then there
exists a protocol II which securely computes shares of f in the correlated
randomness model, with optimal communication O(n) and storage m - 2° +n.

fi is a 2"local function with w inputs and outputs

We can securely compute shares of f; with communication O(w) and storage O (w - 22k)

Input sharing

v

Communication: O(w - d/k) = O(s/k)

i
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There exist a protocol to evaluate any LBC, with

polynomial storage and total communication:
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Arithmetic Setting

There is a very natural extension of this protocol to arithmetic circuits
(apparently, was not observed before)

Idea: replace truth-tables by multivariate polynomials
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Open Questions

* Where is the real barrier?
- Can we get sublinear communication and linear computation?

« Can we extend the result to all circuits?

11/12



Thanks for your attention

Questions?



