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Zero-Knowledge Argument

» Interactive protocol between a prover P and a verifier V;
» P knows a proof 7 of a statement;

» Example: | know a proof of Riemann hypothesis, but | do not
want you to steal my million.

Correctness: if the proof is true, V will output “ok”.

Soundness: No malicious prover P’ can make V output “ok” on a
wrong statement.

Zero-Knowledge: V learns nothing from the protocol, except that
the statement is true.
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Zero-Knowledge Argument over the Integers

» Zero-knowledge proofs of relations between committed values
play a fundamental role in cryptography

» We have efficient ZKA to prove algebraic relations between
(finite) group elements

» Some important types of statements are not captured well by
such relations (e.g.: proving that a > b)

Observation: These statements are well capture by algebraic
relations over integers (aka Diophantine relations)

Example: x > 0 < 3(x, x1, %2, x3) € Z*, x = . x?
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:l Fact i It RSA i :lStrong—RSA i
nH(p,q) (u,x)Hv uH(v,x)
? ? ?
n=p-q u=v*modn u=v*modn
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Zero-Knowledge Argument of Knowledge of an Opening
n=p-q, (g =QR[n], " =¢

V' checks whether com®com’ = gZht.

; ndi — (Z20—z1 to—t
Soundness. With rewinding, extract (m, r) = <ﬁ, ﬁ)

Requires inversions over the exponents of G!



Our Solution in a Nutshell

The analysis considers a simulator that solves a strong-RSA
challenge by interacting with a malicious prover who produces an
accepting proof with probability .

>

The simulator gets a random small RSA challenge x before the
proof, and perfectly hides it in his interaction with the prover;

We study the constraints on the exponent chosen by the
adversary;

We show information-theoretically that if the exponent is
larger than O(1/¢), some non-trivial relation is satisfied;

This relation allows to factor the modulus, hence the exponent
must remain smaller than O(1/¢);

Therefore, the exponent chosen by the prover is equal to x
with non-negligible probability O(e), contradicting RSA.
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Applications, Other Contributions

Applications.
» Relations between committed values (e.g. [CM99])
» Range proofs ([Lip03])

Other Contributions.

» Can convert an FO commitment (integers) into a Gennaro
commitment (modulo a small prime)

» Allows integer ZK proofs with efficient verification
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Thank you for your attention

Questions?
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