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Zero-Knowledge Argument

I Interactive protocol between a prover P and a verifier V ;
I P knows a proof π of a statement;
I Example: I know a proof of Riemann hypothesis, but I do not

want you to steal my million.

Correctness: if the proof is true, V will output “ok”.
Soundness: No malicious prover P ′ can make V output “ok” on a

wrong statement.
Zero-Knowledge: V learns nothing from the protocol, except that

the statement is true.
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Zero-Knowledge Argument over the Integers

I Zero-knowledge proofs of relations between committed values
play a fundamental role in cryptography

I We have efficient ZKA to prove algebraic relations between
(finite) group elements

I Some important types of statements are not captured well by
such relations (e.g.: proving that a ≥ b)

Observation: These statements are well capture by algebraic
relations over integers (aka Diophantine relations)

Example: x ≥ 0⇔ ∃(x0, x1, x2, x3) ∈ Z4, x =
∑

i x
2
i
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Preliminaries on RSA Groups
Zn, with n = pq, p = 2p′ + 1, and q = 2q′ + 1.

|QR[n]| = (p − 1)(q − 1)
4

= p′q′

Fact

(p, q)n

n
?
= p · q

RSA

v(u, x)

u
?
= v x mod n

single solution

Zn :

x

x = 65537
x

Strong-RSA

(v , x)u

u
?
= v x mod n

exp. many solutions
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Zero-Knowledge Argument of Knowledge of an Opening
n = p · q, 〈g〉 = QR[n], hα = g

com = gmhr

m, r

z ← em + y
t ← er + s

com
′ = g

y h
s

e

z , t

V checks whether comecom′ = g zht .

Soundness. With rewinding, extract (m, r) =
(
z0−z1
e0−e1 ,

t0−t1
e0−e1

)
Requires inversions over the exponents of G!
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Our Solution in a Nutshell

The analysis considers a simulator that solves a strong-RSA
challenge by interacting with a malicious prover who produces an
accepting proof with probability ε.

I The simulator gets a random small RSA challenge x before the
proof, and perfectly hides it in his interaction with the prover;

I We study the constraints on the exponent chosen by the
adversary;

I We show information-theoretically that if the exponent is
larger than O(1/ε), some non-trivial relation is satisfied;

I This relation allows to factor the modulus, hence the exponent
must remain smaller than O(1/ε);

I Therefore, the exponent chosen by the prover is equal to x
with non-negligible probability O(ε), contradicting RSA.
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Applications, Other Contributions

Applications.
I Relations between committed values (e.g. [CM99])
I Range proofs ([Lip03])

Other Contributions.
I Can convert an FO commitment (integers) into a Gennaro

commitment (modulo a small prime)
I Allows integer ZK proofs with efficient verification
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Thank you for your attention

Questions?
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