The Model

Information-Theoretic Secure Computation

- n parties with inputs (x_1, \cdots, x_n)
- The adversary corrupts at most t parties
- **Goal:** computing $f(x_1, \cdots, x_n)$ without revealing more

Background

This Work
Information-Theoretic Secure Computation

The Model

• n parties with inputs (x_1, \cdots, x_n)
• The adversary corrupts at most t parties
• **Goal**: computing $f(x_1, \cdots, x_n)$ without revealing more

Background

• Secure computation is impossible deterministically: **randomness is required**

This Work

• parties with inputs (x_1, \cdots, x_n)
The Model

Information-Theoretic Secure Computation

- n parties with inputs (x_1, \ldots, x_n)
- The adversary corrupts at most t parties
- **Goal**: computing $f(x_1, \ldots, x_n)$ without revealing more

Background

- Secure computation is impossible deterministically: *randomness is required*
- **Natural question**: how much randomness is needed? Studied in many previous works.

This Work

- Parties with inputs x_1, \ldots, x_n
- The adversary corrupts at most t parties
- Goal: computing $f(x_1, \ldots, x_n)$ without revealing more

How much money to compute $f(x_1, \ldots, x_n)$?
The Model

Information-Theoretic Secure Computation

- n parties with inputs (x_1, \cdots, x_n)
- The adversary corrupts at most t parties
- **Goal**: computing $f(x_1, \cdots, x_n)$ without revealing more

Background

- Secure computation is impossible deterministically: \textit{randomness is required}
- **Natural question**: how much randomness is needed? Studied in many previous works.
- **Motivation**: producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

How much $\$\$\$\$ to compute $f(x_1, \cdots, x_n)$?
The Model

Information-Theoretic Secure Computation

- n parties with inputs (x_1, \cdots, x_n)
- The adversary corrupts at most t parties
- **Goal**: computing $f(x_1, \cdots, x_n)$ without revealing more

Background

- Secure computation is impossible deterministically: *randomness is required*
- **Natural question**: how much randomness is needed? Studied in many previous works.
- **Motivation**: producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

- **We ask**: how many players need to toss random coins?
- **Motivation**: you don’t want to trust everyone’s ability to toss high-quality random coins!

How many parties with $\$\$\$\$\$\$ to compute $f(x_1, \cdots, x_n)$?
The Model

Information-Theoretic Secure Computation

- \(n \) parties with inputs \((x_1, \ldots, x_n)\)
- The adversary corrupts at most \(t \) parties
- **Goal:** computing \(f(x_1, \ldots, x_n) \) without revealing more

Background

- Secure computation is impossible deterministically: *randomness is required*
- **Natural question:** how much randomness is needed? Studied in many previous works.
- **Motivation:** producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

- **We ask:** how many players need to toss random coins?
- **Motivation:** you don’t want to trust everyone’s ability to toss high-quality random coins!

How many parties with \(\$ \) to compute \(f(x_1, \ldots, x_n) \)?
The Model

Information-Theoretic Secure Computation

- n parties with inputs (x_1, \ldots, x_n)
- The adversary corrupts at most t parties
- **Goal:** computing $f(x_1, \ldots, x_n)$ without revealing more

Background

- Secure computation is impossible deterministically: *randomness is required*
- **Natural question:** how much randomness is needed? Studied in many previous works.
- **Motivation:** producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

- **We ask:** how many players need to toss random coins?
- **Motivation:** you don’t want to trust everyone’s ability to toss high-quality random coins!

How many parties with $\$ to compute $f(x_1, \ldots, x_n)$?
First Result: upper and lower bounds on the number of sources

<table>
<thead>
<tr>
<th>Deterministic Functionalities</th>
<th>Randomized Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>t</td>
<td>$t + 1$</td>
</tr>
<tr>
<td>t</td>
<td>$t + 1$</td>
</tr>
</tbody>
</table>

Kushilevitz & Mansour, PODC'96 show that t parties must toss coins for t-private XOR.

This work: It suffices that t parties toss coins to t-privately compute all deterministic functionalities.

This work: there is a randomized functionality \mathcal{F} that cannot be t-privately comp. with t sources.

This work: $t + 1$ sources suffice to t-privately compute any randomized functionality.
Kushilevitz & Mansour, PODC’96 show that t parties must toss coins for t-private XOR

Previous work

This work: It suffices that t parties toss coins to t-privately compute all deterministic functionalities

First Result: upper and lower bounds on the number of sources

<table>
<thead>
<tr>
<th>Deterministic Functionalities</th>
<th>Randomized Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>t</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>$t + 1$</td>
</tr>
</tbody>
</table>

t parties

This work: $t + 1$ sources suffice to t-privately compute any randomized functionality

This work: there is a randomized functionality $ℱ$ that cannot be t-privately comp. with t sources
First Result: Random Source Complexity of t-Private Computation

<table>
<thead>
<tr>
<th>Deterministic Functionalities</th>
<th>Randomized Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>$t + 1$</td>
<td>$t + 1$</td>
</tr>
</tbody>
</table>

- **Kushilevitz & Mansour, PODC'96** show that t parties must toss coins for t-private XOR.
- **Previous work**:
 - Lower Bound: t
 - Upper Bound: $t + 1$
- **First Result**: upper and lower bounds on the number of sources.
- **This work**: It suffices that t parties toss coins to t-privately compute all deterministic functionalities.
- **This work**: $t + 1$ sources suffice to t-privately compute any randomized functionality.
- **This work**: there is a randomized functionality \mathcal{F} that cannot be t-privately comp. with t sources.

Easy
First Result: Random Source Complexity of t-Private Computation

<table>
<thead>
<tr>
<th>Deterministic Functionalities</th>
<th>Randomized Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>t</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>t</td>
</tr>
</tbody>
</table>

Core result

This work: It *suffices* that t parties toss coins to t-privately compute all deterministic functionalities.

Previous work

Kushilevitz & Mansour, PODC'96 show that t parties must toss coins for t-private XOR.

First Result: upper and lower bounds on the number of sources

$\begin{array}{cc}
 t & t + 1 \\
 t & t + 1 \\
\end{array}$

Easy

This work: there is a randomized functionality \mathcal{F} that cannot be t-privately comp. with t sources.

This work:

This work: $t + 1$ sources suffice to t-privately compute any randomized functionality.
First Result: Random Source Complexity of \(t \)-Private Computation

Kushilevitz & Mansour, PODC'96 show that \(t \) parties must toss coins for \(t \)-private XOR.

This work: there is a randomized functionality \(\mathcal{F} \) that cannot be \(t \)-privately comp. with \(t \) sources.

Previous work

Core result

This work: It suffices that \(t \) parties toss coins to \(t \)-privately compute all deterministic functionalities.

Core result

This work: \(t + 1 \) sources suffice to \(t \)-privately compute any randomized functionality.

Deterministic Functionalities

<table>
<thead>
<tr>
<th></th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
</tbody>
</table>

Randomized Functionalities

<table>
<thead>
<tr>
<th></th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(t + 1)</td>
<td>(t + 1)</td>
</tr>
</tbody>
</table>

Secure computation is impossible deterministically... But it is possible even if we allow the adversary to corrupt all players that toss coins!
Second Result: Randomness vs Random Sources, and 1-Private AND

- **Question.** What is the tradeoff between the number of sources and the randomness complexity? Do we need much more randomness to use a minimal number of sources?

 Proving tight bounds on randomness is notoriously very hard. Towards making progress, as in previous works, we focus on a natural functionality: the n-party AND.

- **Best known protocol for 1-private, n-party AND:** 8 bits, 2 sources (KOPRTV, TCC’19)

- **Question.** Can we match this bound with a single source?

- **Our result.** Surprisingly, we manage to improve both the randomness complexity and the number of sources: we describe a protocol using only 6 bits and a single source.
Kushilevitz & Mansour, PODC'96 show that t parties must toss coins for t-private XOR.

Previous work: It suffices that t parties toss coins to t-privately compute all deterministic functionalities.

This work: $t+1$ sources suffice to t-privately compute any randomized functionality.

Core result:

<table>
<thead>
<tr>
<th>Deterministic Functionalities</th>
<th>Randomized Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>$t+1$</td>
</tr>
<tr>
<td>t</td>
<td>$t+1$</td>
</tr>
</tbody>
</table>

Easy:

This work: there is a randomized functionality F that cannot be t-privately comp. with t sources.
<table>
<thead>
<tr>
<th>Deterministic Functionalities</th>
<th>Randomized Functionalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound: t</td>
<td>Upper Bound: $t + 1$</td>
</tr>
<tr>
<td>This work: It suffices that t parties toss coins to t-privately compute all deterministic functionalities</td>
<td></td>
</tr>
</tbody>
</table>

This work: there is a randomized functionality \mathcal{F} that cannot be t-privately computed with t sources.

This work: $t + 1$ sources suffice to t-privately compute any randomized functionality.

Kushilevitz & Mansour, PODC'96 show that t parties must toss coins for t-private XOR.

Easy Core result.

First Result: Random Source Complexity of t-Private Computation

Starting point (warmup)
Kushilevitz & Mansour, PODC'96, show that t parties must toss coins for t-private XOR.

This work: It suffices that t parties toss coins to t-privately compute all deterministic functionalities.

Deterministic Functionalities
- Lower Bound: t
- Upper Bound: t

Randomized Functionalities
- Lower Bound: t
- Upper Bound: $t + 1$

This work: there is a randomized functionality F that cannot be t-privately computed with t sources.

This work: $t + 1$ sources suffice to t-privately compute any randomized functionality.

Most of the presentation is dedicated to understanding the relationships between deterministic and randomized functionalities.
Kushilevitz & Mansour, PODC’96 show that t parties must toss coins for t-private XOR.

This work: It suffices that t parties toss coins to t-privately compute all deterministic functionalities.

This work: there is a randomized functionality \mathcal{F} that cannot be t-privately comp. with t sources.

This work: $t + 1$ sources suffice to t-privately compute any randomized functionality.

First Result: Random Source Complexity of t-Private Computation

- Lower Bound: t
- Upper Bound: t
- Deterministic Functionalities: t
- Randomized Functionalities: $t + 1$

Easy - see paper!
Warmup: \((t + 1)\) sources, randomized functionalities

\[F(x_1, x_2, x_3, x_4, x_5; r) \]
Each source sends a random tape to each player

\[F(x_1, x_2, x_3, x_4, x_5; r) \]
Warmup: \((t + 1)\) sources, randomized functionalities

Each player sets their random tape to the XOR of the tapes received

\[
F(x_1, x_2, x_3, x_4, x_5; r)
\]
All parties run BGW with these tapes to compute $F(x_1, x_2, x_3, x_4, x_5; r)$

BGW (Ben-Or, Goldwasser, Wigderson 1988): information-theoretic secure computation for any $t < n/2$. Any other IT protocol would work.
Warmup: \((t + 1)\) sources, randomized functionalities

All parties run BGW with these tapes to compute \(F(x_1, x_2, x_3, x_4, x_5; r)\)

BGW (Ben-Or, Goldwasser, Wigderson 1988): information-theoretic secure computation for any \(t < n/2\). Any other IT protocol would work.

\[F(x_1, x_2, x_3, x_4, x_5; r) \]
Core Result: t sources, deterministic functionalities

$$F(x_1, x_2, x_3, x_4, x_5)$$
Core Result: t sources, deterministic functionalities

Isolating the sources

$F(x_1, x_2, x_3, x_4, x_5)$
Input Sharing

Core Result: t sources, deterministic functionalities

$F(x_1, x_2, x_3, x_4, x_5)$
Core Result: \(t \) sources, deterministic functionalities

Input Sharing

\[F(x_1, x_2, x_3, x_4, x_5) \]
Core Result: t sources, deterministic functionalities

Outer Protocol

\[F'(\text{shares}, x_2, x_3, x_5) = F(x_1, x_2, x_3, x_4, x_5) \]
Core Result: t sources, deterministic functionalities

Outer Protocol

$$F'(\text{shares, } x_2, x_3, x_5) = F(x_1, x_2, x_3, x_4, x_5)$$
Core Result: t sources, deterministic functionalities

Outer Protocol

GMW computes the circuit gate-by-gate on shares of the input wires.

- XOR gates are local.
- AND gates can be handled by consuming a Beaver triple.

Use an Inner Protocol

GMW (Goldreich, Micali, Wigderson 1987 + Beaver 1995): IT secure computation for any $t < n - 1$ in the correlated randomness model. Any all-but-one IT protocol in the CR model would work.
Core Result: t sources, deterministic functionalities
Inner Protocol

Tape sharing

Core Result: t sources, deterministic functionalities
Core Result: t sources, deterministic functionalities

Inner Protocol

Tape sharing
Core Result: t sources, deterministic functionalities
Core Result: t sources, deterministic functionalities

Inner Protocol

n-party BGW

n-party BGW for $\mathcal{F}_{\text{Beaver}}$

Distributes a random Beaver triple among the deterministic parties

Exactly as the $(t+1)$-source protocol, but with t sources.

Crucial difference: this is an input-independent protocol!
Core Result: t sources, deterministic functionalities
Core Result: t sources, deterministic functionalities

Summary of the protocol

Security
Summary of the protocol

Core Result: t sources, deterministic functionalities

Security

Two cases

(1) there is one honest source

(2) $𝒜$ corrupts only the sources
Summary of the protocol

Security

Two cases
1. There is one honest source
2. \(\mathcal{A} \) corrupts only the sources

Two observations
(a) \(\mathcal{A} \) can’t see the shared tapes
(b) \(t < n/2 \) \(\Rightarrow \) \(t < n - t \)

Core Result: \(t \) sources, deterministic functionalities
Summary of the protocol

Security

Two cases

1. Two observations
 - BGW is secure
 - The Beaver triples are trusted

 (a) \mathcal{A} can’t see the shared tapes
 - $t < n/2$ implies $t < n - t$
 - there is one honest player
 - GMW is secure

2. One observation
 - no source ever sees an input-dependent message, beyond the output!
Motivation & Previous Work

- AND is a basic building block of MPC, together with XOR (for which we already have tight — trivial — bounds)
- The randomness complexity of 1-private n-party AND has been studied in previous works
- Most recent result [TCC:KOPRTV’19]: AND can be computed using 8 bits (and two sources)

Setting

- n parties (P_0, \cdots, P_{n-1}) with respective inputs (x_0, \cdots, x_{n-1})
- Output: $\land_{i=0}^{n-1} x_i$
- At most one corrupted party (= no collusion)
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \ldots$

$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3$
Second Result: 1-Private \(n \)-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \ldots$

Mask

$\cdot x_0 \rightarrow x_0$

Shares

$\times \times \time...
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Mask

$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \ldots$

Shares

$x_0 \cdot x_0$

$\cdot x_0 \quad x_0$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Invariants
- shares of $\prod_i x_i$ and $\prod_i x_i$

Shares

Mask

$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \ldots$

$x_0 \cdot x_0$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Mask

P_0 P_1 P_2 P_3 ...

x_0 x_1 x_2 x_3

Shares

Invariant

shares of $\prod_i x_i$ and $\prod_i x_i$

We propagate the invariant: throughout the computation, P_{i-1} and P_i will hold shares of these products.
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Mask

 Shares

Invariant

shares of $\prod x_i$ and $\prod x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Mask

$x_0 \cdot \cdot \cdot$

Shares

Invariant

shares of $\prod_{i} x_i$ and $\prod_{i} x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Invariant shares of $\prod_i x_i$ and $\prod_i x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Invariant shares of $\prod_{i} x_i$ and $\prod_{i} x_i$

Invariant

shares of $\prod_{i} x_i$ and $\prod_{i} x_i$

Shares of $x_0 \cdot x_1$ are not uniform! (Biased toward 0)
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Mask

$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \ldots$

Rerandomizer

$x_0 \cdot x_1 \rightarrow x_0 \cdot x_1$

Shares

Invariant
shares of $\prod_{i} x_i$ and $\prod_{i} x_i$

Invariant
shares of $\prod_{i} x_i$ and $\prod_{i} x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Invariants:
- shares of $\prod_i x_i$ and $\prod_i x_i$

Diagram:
- $P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \ldots$
- x_0, x_1, x_2, x_3
- Shares, Rerandomizer, Mask
- $x_0 \cdot x_1 \rightarrow x_0 \cdot x_1$
- $\prod_i x_i$ and $\prod_i x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Mask

Rerandomizer

$x_0 \cdot x_0$

Shares

Invariant

shares of $\prod_i x_i$ and $\prod_i x_i$

Invariant

shares of $\prod_i x_i$ and $\prod_i x_i$
Second Result: 1–Private n–Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Invariant shares of $\prod_i x_i$ and $\prod_i x_i$

Invariant shares of $\prod_i x_i$ and $\prod_i x_i$

Invariant shares of $\prod_i x_i$ and $\prod_i x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Budget of random bits

Invariant shares of $\prod_{i=0}^{n-2} x_i$ and $\prod_{i=0}^{n-2} x_i$
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Budget of random bits

Invariant

shares of $\prod_{i=0}^{n-2} x_i$ and $\prod_{i=0}^{n-2} x_i$

Output

\[\begin{align*}
0 & \quad \text{if } x_{n-1} = 0 \\
\prod_{i=0}^{n-1} x_i & \quad \text{if } x_{n-1} = 1
\end{align*} \]
Output Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Budget of random bits

\[\prod_{i=0}^{n-1} x_i \]

Output

\[\begin{cases} 0 & \text{if } x_{n-1} = 0 \\ \prod_{i=0}^{n-1} x_i & \text{if } x_{n-1} = 1 \end{cases} \]

\[\prod_{i=0}^{n-2} x_i \]

Invariant

shares of $\prod_{i=0}^{n-2} x_i$ and $\prod_{i=0}^{n-2} x_i$

Idea 1

Use an oblivious transfer with x_{n-1} as selection bit, and sender inputs 0 and P_{n-2}’s share of $\prod_{i=0}^{n-1} x_i \implies$ uses 3 random bits!
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Idea 1
Use an oblivious transfer with x_{n-1} as selection bit, and sender inputs 0 and P_{n-2}’s share of $\prod_{i=0}^{n-1} x_i$ uses 3 random bits!

Idea 2
P_{n-2} and P_{n-1} don’t need the rerandomization bit $\$ \rightarrow \text{can reuse it for the OT}!
Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Budget of random bits

\[P_{n-3} \rightarrow \ldots \rightarrow P_{n-2} \rightarrow P_{n-1} \]

\[x_{n-2} \rightarrow x_{n-1} \]

Invariant shares of \(\prod_{i=0}^{n-2} x_i \) and \(\prod_{i=0}^{n-2} x_i \)

Output

\[\begin{align*}
0 & \text{ if } x_{n-1} = 0 \\
\prod_{i=0}^{n-1} x_i & \text{ if } x_{n-1} = 1
\end{align*} \]

Idea 1

Use an oblivious transfer with x_{n-1} as selection bit, and sender inputs 0 and P_{n-2}’s share of $\prod_{i=0}^{n-1} x_i \implies$ uses 3 random bits!

Idea 2

P_{n-2} and P_{n-1} don’t need the rerandomization bit $\$ \implies$ can reuse it for the OT!
Output Phase

Budget of random bits

Idea 1
Use an oblivious transfer with x_{n-1} as selection bit, and sender inputs 0 and P_{n-2}’s share of $\prod_{i=0}^{n-1} x_i \Rightarrow$ uses 3 random bits!

Idea 2
P_{n-2} and P_{n-1} don’t need the rerandomization bit $\$ \Rightarrow$ can reuse it for the OT!
Thank you for your attention!

Questions?