Random Sources in Secure Computation

Geoffroy Couteau, Adi Rosén

The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

This Work

The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

- Secure computation is impossible deterministically: randomness is required

The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed? Studied in many previous works.

This Work

[^0]
The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed? Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

How much to compute $f\left(x_{1}, \cdots, x_{n}\right)$?

The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed? Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

- We ask: how many players need to toss random coins?
- Motivation: you don't want to trust everyone's ability to toss high-quality random coins!

How many parties with \square to compute $f\left(x_{1}, \cdots, x_{n}\right)$?

The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed? Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

- We ask: how many players need to toss random coins?
- Motivation: you don't want to trust everyone's ability to toss high-quality random coins!

How many parties with \square to compute $f\left(x_{1}, \cdots, x_{n}\right)$?

The Model

Information-Theoretic Secure Computation

- n parties with inputs $\left(x_{1}, \cdots, x_{n}\right)$
- The adversary corrupts at most t parties
- Goal: computing $f\left(x_{1}, \cdots, x_{n}\right)$ without revealing more

Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed? Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

This Work

- We ask: how many players need to toss random coins?
- Motivation: you don't want to trust everyone's ability to toss high-quality random coins!

How many parties with to compute $f\left(x_{1}, \cdots, x_{n}\right)$?

First Result: Random Source Complexity of t-Private Computation

First Result: Random Source Complexity of t-Private Computation

First Result: Random Source Complexity of t-Private Computation

First Result: Random Source Complexity of t-Private Computation

First Result: Random Source Complexity of t-Private Computation

Second Result: Randomness vs Random Sources, and 1-Private AND

Second Result: the randomness complexity of 1-private AND

- Question. What is the tradeoff between the number of sources and the randomness complexity? Do we need much more randomness to use a minimal number of sources?

Proving tight bounds on randomness is notoriously very hard. Towards making progress, as in previous works, we focus on a natural functionality: the n-party AND.

- Best known protocol for 1-private, n-party AND: 8 bits, 2 sources (KOPRTV, TCC'19)
- Question. Can we match this bound with a single source?
- Our result. Surprisingly, we manage to improve both the randomness complexity and the number of sources: we describe a protocol using only 6 bits and a single source.

First Result: Random Source Complexity of t-Private Computation

Warmup: $(t+1)$ sources, randomized functionalities

Warmup: $(t+1)$ sources, randomized functionalities

Each source sends a random tape to each player

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; r\right)
$$

Warmup: $(t+1)$ sources, randomized functionalities

Each player sets their random tape to the XOR of the tapes received
$F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; r\right)$

Warmup: $(t+1)$ sources, randomized functionalities

| All parties run BGW with these tapes |
| :--- | :--- |
| to compute $F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4} ; r\right)$ |$\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; r\right)$

BGW (Ben-Or, Goldwasser, Wigderson 1988): information-theoretic secure computation for any $t<n / 2$. Any other IT protocol would work.

Warmup: $(t+1)$ sources, randomized functionalities

| All parties run BGW with these tapes |
| :--- | :--- |
| to compute $F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{4} ; r\right)$ |$\quad F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; r\right)$

BGW (Ben-Or, Goldwasser, Wigderson 1988): information-theoretic secure computation for any $t<n / 2$. Any other IT protocol would work.

\bigoplus

Core Result: t sources, deterministic functionalities

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)
$$

Core Result: t sources, deterministic functionalities

Core Result: t sources deterministic functionalities

Core Result: t sources deterministic functionalities

Core Result: t sources, deterministic functionalities

Core Result: t sources, deterministic functionalities

Core Result: t sources, deterministic functionalities

Summary of the protocol
Security

Core Result: t sources, deterministic functionalities

Summary of the protocol

Security

Two cases
(1) there is one honest source
(2) \mathscr{A} corrupts only the sources

Core Result: t sources, deterministic functionalities

Summary of the protocol

Security

Two cases
(1) there is one honest source
(2) \mathscr{A} corrupts only the sources
(1) Two observations
(a) \mathscr{A} can't see the shared tapes
$\Longrightarrow B G W$ is secure
\Longrightarrow The Beaver triples are trusted
(b) $t<n / 2 \Longrightarrow t<n-t$
\Longrightarrow there is one honest player
\Longrightarrow GMW is secure
\qquad
\Longrightarrow

Core Result: t sources, deterministic functionalities

Summary of the protocol

Security

Two cases
(1) there is one honest source
(2) \mathscr{A} corrupts only the sources
(1) Two observations
(a) \mathscr{A} can't see the shared tapes
\Longrightarrow BGW is secure
\Longrightarrow The Beaver triples are trusted
(b) $t<n / 2 \Longrightarrow t<n-t$
\Longrightarrow there is one honest player
\Longrightarrow GMW is secure

One observation

no source ever sees an inputdependent message, beyond the output!

Motivation \& Previous Work

- AND is a basic building block of MPC, together with XOR (for which we already have tight - trivial - bounds)
- The randomness complexity of 1-private n-party AND has been studied in previous works
- Most recent result [TCC:KOPRTV'19]: AND can be computed using 8 bits (and two sources)

Setting

- n parties $\left(P_{0}, \cdots, P_{n-1}\right)$ with respective inputs $\left(x_{0}, \cdots, x_{n-1}\right)$
- Output: $\wedge_{i=0}^{n-1} x_{i}$
- At most one corrupted party (= no collusion)

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Shares
囚
Invariant
shares of 중 $\prod x_{i}$ and $\prod x_{i}$

Second Result：1－Private n－Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Shares
囚区
Invariant shares of 父 $\prod_{x_{i}}$ and $\prod x_{i}: \begin{array}{c:c}\text { We propagate the invariant：throughout the computa } \\ P_{i-1} \text { and } P_{i} \text { will hold shares of these products．}\end{array}$

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Invariant

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Main Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Budget of random bits

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Budget of
random bits

Output
$\begin{array}{cc}0 & \text { if } x_{n-1}=\mathbf{0} \\ \prod_{i=0}^{n-1} x_{i} & \text { if } x_{n-1}=1\end{array}$

Invariant
shares of $\prod_{i=0}^{n-2} x_{i}$ and $\prod_{i=0}^{n-2} x_{i}$

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Second Result: 1-Private n-Party AND with 6 Bits and 1 Source

Output Phase

Thank you for your attention!

Questions?

[^0]: How much to compute $f\left(x_{1}, \cdots, x_{n}\right)$?

