
Random Sources in Secure Computation

Geoffroy Couteau, Adi Rosén

Information-Theoretic Secure Computation
• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

The Model

Background
x1

x2

x3

x4x5

This Work

Information-Theoretic Secure Computation

The Model

Background
x1

x2

x3

x4x5

• Secure computation is impossible deterministically:
randomness is required

• Natural question: how much randomness is needed?
Studied in many previous works.

• Motivation: producing high-quality randomness is hard;
it should be treated as a scarce resource.

This Work

• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

Information-Theoretic Secure Computation

x1

x2

x3

x4x5

The Model

Background

?

?
?

? ?

How much to compute ?f(x1, ⋯, xn)

• Secure computation is impossible deterministically:
randomness is required

• Natural question: how much randomness is needed?
Studied in many previous works.

• Motivation: producing high-quality randomness is hard;
it should be treated as a scarce resource.

This Work

• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

Information-Theoretic Secure Computation

x1

x2

x3

x4x5

The Model

Background

?

?
?

? ?

How much to compute ?f(x1, ⋯, xn)

• Secure computation is impossible deterministically:
randomness is required

• Natural question: how much randomness is needed?
Studied in many previous works.

• Motivation: producing high-quality randomness is hard;
it should be treated as a scarce resource.

This Work

How much to compute ?f(x1, ⋯, xn)

• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

Information-Theoretic Secure Computation

The Model

• Secure computation is impossible deterministically:
randomness is required

• Natural question: how much randomness is needed?
Studied in many previous works.

• Motivation: producing high-quality randomness is hard;
it should be treated as a scarce resource.

Background

This Work

• We ask: how many players need to toss random coins?

• Motivation: you don’t want to trust everyone’s ability to
toss high-quality random coins!

How many parties with to compute ?f(x1, ⋯, xn)

• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

Information-Theoretic Secure Computation

The Model

• Secure computation is impossible deterministically:
randomness is required

• Natural question: how much randomness is needed?
Studied in many previous works.

• Motivation: producing high-quality randomness is hard;
it should be treated as a scarce resource.

Background

This Work

• We ask: how many players need to toss random coins?

• Motivation: you don’t want to trust everyone’s ability to
toss high-quality random coins!

How many parties with to compute ?f(x1, ⋯, xn)

• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

Information-Theoretic Secure Computation

The Model

• Secure computation is impossible deterministically:
randomness is required

• Natural question: how much randomness is needed?
Studied in many previous works.

• Motivation: producing high-quality randomness is hard;
it should be treated as a scarce resource.

Background

This Work

• We ask: how many players need to toss random coins?

• Motivation: you don’t want to trust everyone’s ability to
toss high-quality random coins!

How many parties with to compute ?f(x1, ⋯, xn)

• parties with inputs

• The adversary corrupts at most parties

• Goal: computing without revealing more

n (x1, ⋯, xn)
t

f(x1, ⋯, xn)

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

First Result: upper and
lower bounds on the
number of sources

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Previous work

First Result: upper and
lower bounds on the
number of sources

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Easy

Previous work

First Result: upper and
lower bounds on the
number of sources

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Easy

Core result

Previous work

First Result: upper and
lower bounds on the
number of sources

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Easy

Core result

Previous work

Secure computation is
impossible deterministically…

But it is possible even if we
allow the adversary to corrupt

all players that toss coins!

First Result: upper and
lower bounds on the
number of sources

Second Result: the
randomness complexity

of 1-private AND

• Question. What is the tradeoff between the number of sources and the randomness complexity? Do we
need much more randomness to use a minimal number of sources?

Proving tight bounds on randomness is notoriously very hard. Towards making progress, as in previous
works, we focus on a natural functionality: the -party AND.

• Best known protocol for -private, -party AND: 8 bits, 2 sources (KOPRTV, TCC’19)

• Question. Can we match this bound with a single source?
• Our result. Surprisingly, we manage to improve both the randomness complexity and the number of
sources: we describe a protocol using only 6 bits and a single source.

n
1 n

Second Result: Randomness vs Random Sources, and 1-Private AND

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Easy

Core result

Previous work

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Easy

Core result

Previous work

First Result: Random Source Complexity of -Private Computationt

Starting point
(warmup)

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 tMost of the
presentation

Easy

Core result

Previous work

First Result: Random Source Complexity of -Private Computationt

Lower
Bound

Upper
Bound

Deterministic
Functionalities

Randomized
Functionalities

t
t

t + 1

t + 1

Kushilevitz & Mansour, PODC’96

show that parties must toss coins

for -private XOR
t

t

This work: It suffices that parties
toss coins to -privately compute

all deterministic functionalities

t
t

This work: there is a randomized
functionality that cannot be
-privately comp. with sources

ℱ t
t

This work: sources suffice to
-privately compute any randomized

functionality

t + 1 t

Easy

Core result

Previous work

First Result: Random Source Complexity of -Private Computationt

Easy - see
paper!

Warmup: sources, randomized functionalities(t + 1)

x1

x2

x3

x4x5

F(x1, x2, x3, x4, x5; r)

x1

x2

x3

x4x5

F(x1, x2, x3, x4, x5; r)Each source sends a random
tape to each player

Warmup: sources, randomized functionalities(t + 1)

x1

x2

x3

x4x5

F(x1, x2, x3, x4, x5; r)

⊕ ⊕

⊕ ⊕

Each player sets their random tape
to the XOR of the tapes received

Warmup: sources, randomized functionalities(t + 1)

x1

x2

x3

x4x5

F(x1, x2, x3, x4, x5; r)

⊕ ⊕

⊕ ⊕

All parties run BGW with these tapes
to compute F(x1, x2, x3, x4, x4; r)

BGW

Warmup: sources, randomized functionalities(t + 1)

BGW (Ben-Or, Goldwasser, Wigderson 1988):
information-theoretic secure computation for
any . Any other IT protocol would work.t < n/2

x1

x2

x3

x4x5

F(x1, x2, x3, x4, x5; r)

⊕ ⊕

⊕ ⊕

All parties run BGW with these tapes
to compute F(x1, x2, x3, x4, x4; r)

BGW

Warmup: sources, randomized functionalities(t + 1)

BGW (Ben-Or, Goldwasser, Wigderson 1988):
information-theoretic secure computation for
any . Any other IT protocol would work.t < n/2

Core Result: sources, deterministic functionalitiest

x1

x2

x3

x4x5

F(x1, x2, x3, x4, x5)

x1

x2

x3

x4

x5

F(x1, x2, x3, x4, x5)
Isolating the sources

Core Result: sources, deterministic functionalitiest

x2

x3

x5

x(2)
1

x(3)
1

x(5)
1

x1

x4

F(x1, x2, x3, x4, x5)
Input Sharing

Core Result: sources, deterministic functionalitiest

x2

x3

x5

x(2)
1

x(3)
1

x(5)
1

x(2)
4

x(3)
4

x(5)
4

x1

x4

F(x1, x2, x3, x4, x5)
Input Sharing

Core Result: sources, deterministic functionalitiest

x1

(x2,

(x3,

x4

(x5,

x(2)
1 , x(2)

4)

x(3)
1 , x(3)

4)

x(5)
1 , x(5)

4)

F′￼(𝗌𝗁𝖺𝗋𝖾𝗌, x2, x3, x5)
= F(x1, x2, x3, x4, x5)

Outer Protocol

Core Result: sources, deterministic functionalitiest

x1

(x2,

(x3,

x4

(x5,

x(2)
1 , x(2)

4)

x(3)
1 , x(3)

4)

x(5)
1 , x(5)

4)

F′￼(𝗌𝗁𝖺𝗋𝖾𝗌, x2, x3, x5)
= F(x1, x2, x3, x4, x5)

GMW
Outer Protocol

Core Result: sources, deterministic functionalitiest

x1

(x2,

(x3,

x4

(x5,

x(2)
1 , x(2)

4)

x(3)
1 , x(3)

4)

x(5)
1 , x(5)

4)

F′￼(𝗌𝗁𝖺𝗋𝖾𝗌, x2, x3, x5)
= F(x1, x2, x3, x4, x5)

GMW
Outer Protocol

Core Result: sources, deterministic functionalitiest

GMW computes the
circuit gate-by-gate on
shares of the input wires.

XOR gates are local.

AND gates can be
handled by consuming a
Beaver triple

Use an Inner Protocol

GMW (Goldreich, Micali, Wigderson 1987 +
Beaver 1995): IT secure computation for
any in the correlated randomness
model. Any all-but-one IT protocol in the
CR model would work.

t < n − 1

Inner Protocol Tape sharing

Core Result: sources, deterministic functionalitiest

Inner Protocol Tape sharing

Core Result: sources, deterministic functionalitiest

Inner Protocol Tape sharing

Core Result: sources, deterministic functionalitiest

⊕

⊕

⊕

Inner Protocol Tape sharing

Core Result: sources, deterministic functionalitiest

⊕

⊕

⊕

-party BGW for

Distributes a random Beaver triple
among the deterministic parties

n ℱ𝖡𝖾𝖺𝗏𝖾𝗋
Inner Protocol -party BGWn

Exactly as the -source protocol, but with
 sources.

Crucial difference: this is an input-independent
protocol!

(t + 1)
t

Core Result: sources, deterministic functionalitiest

x1

(x2,

(x3,

x4

(x5,

x(2)
1 , x(2)

4)

x(3)
1 , x(3)

4)

x(5)
1 , x(5)

4)

Output

F(x1, x2, x3, x4, x5)

F(x1, x2, x3, x4, x5)

Core Result: sources, deterministic functionalitiest

Summary of the protocol Security

Core Result: sources, deterministic functionalitiest

Summary of the protocol Security

(1) there is one honest source 
(2) corrupts only the sources𝒜

Two cases

Core Result: sources, deterministic functionalitiest

Summary of the protocol Security

1

(a) can’t see the shared tapes 
 BGW is secure

 The Beaver triples are trusted

(b)

 there is one honest player

 GMW is secure

𝒜
⟹
⟹

t < n/2 ⟹ t < n − t
⟹
⟹

Two observations

(1) there is one honest source 
(2) corrupts only the sources𝒜

Two cases

Core Result: sources, deterministic functionalitiest

Summary of the protocol Security

1

(a) can’t see the shared tapes 
 BGW is secure

 The Beaver triples are trusted

(b)

 there is one honest player

 GMW is secure

𝒜
⟹
⟹

t < n/2 ⟹ t < n − t
⟹
⟹

Two observations

(1) there is one honest source 
(2) corrupts only the sources𝒜

Two cases

2 One observation
no source ever sees an input-
dependent message, beyond
the output!

Sources
to players

No source
involved

Sources
to players

Input-
independent

Core Result: sources, deterministic functionalitiest

- AND is a basic building block of MPC, together with XOR (for
which we already have tight — trivial — bounds)

- The randomness complexity of 1-private -party AND has been
studied in previous works

- Most recent result [TCC:KOPRTV’19]: AND can be computed
using 8 bits (and two sources)

n

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Motivation & Previous Work

Setting

- parties with respective inputs

- Output:

- At most one corrupted party (= no collusion)

n (P0, ⋯, Pn−1) (x0, ⋯, xn−1)
∧n−1

i=0 xi

P0 P1 P2 P3
x0 x1 x2 x3

⋯

Budget of
random bits

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen
Main Phase

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen
Main Phase

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

⋯

Mask

Shares

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen
Main Phase

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

⋯

Mask

Shares

×

× ×

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen
Main Phase

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

⋯

Mask

Shares

×

× ×

Budget of
random bits

×
×
×

Invariant
shares of and ∏

i

xi ∏
i

xi

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen
Main Phase

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

⋯

Mask

Shares

×

× ×

Budget of
random bits

×
×
×

Invariant
shares of and ∏

i

xi ∏
i

xi

We propagate the invariant: throughout the computation,
 and will hold shares of these products.Pi−1 Pi

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

Main Phase

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

Main Phase

Invariant
shares of and ∏

i

xi ∏
i

xi

x1⋅x0
x1⋅x0

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

Main Phase

Invariant
shares of and ∏

i

xi ∏
i

xi

x1⋅x0
x1⋅x0

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

Shares of are not uniform! (Biased toward 0)x1⋅x0

Main Phase

Invariant
shares of and ∏

i

xi ∏
i

xi

x1⋅x0
x1⋅x0

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

+ +$ $

×
$

Main Phase

Rerandomizer
×

Invariant
shares of and ∏

i

xi ∏
i

xi

x1⋅x0
x1⋅x0

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

+ +$ $

×
$

Main Phase

Rerandomizer
×

$ $

$ ←

Invariant
shares of and ∏

i

xi ∏
i

xi

x1⋅x0
x1⋅x0

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

+ +$ $

×
$

⋅ +
⋅ +((+$

Main Phase

Rerandomizer
×

$

$ ←

$

x1⋅x0
x1⋅x0

Invariant
shares of and ∏

i

xi ∏
i

xi

P0 P1 P2 P3
x0 x1 x2 x3x0⋅

← +x1

⋅ + ⋅ +
⋅ + ⋅ +((((

⋯

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Mask

Shares

×

× ×
Invariant

shares of and ∏
i

xi ∏
i

xi

+ +$ $

×
$ $

⋅ +
⋅ +((+$

⋯

⋯

Invariant
shares of and ∏

i

xi ∏
i

xi
⋯

Main Phase

Rerandomizer
×

$ ←

$

Output Phase

Pn−3 Pn−2
xn−2

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

×
⋯

⋯

Invariant

shares of and
n−2

∏
i=0

xi

n−2

∏
i=0

xi

Pn−1
xn−1

$

Output Phase

Pn−3 Pn−2
xn−2

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

×
⋯

⋯

Invariant

shares of and
n−2

∏
i=0

xi

n−2

∏
i=0

xi

Pn−1
xn−1

$

Output
 0 if

 if

xn−1 = 0
n−1

∏
i=0

xi xn−1 = 1

Output Phase

Pn−3 Pn−2
xn−2

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

×
⋯

⋯

Invariant

shares of and
n−2

∏
i=0

xi

n−2

∏
i=0

xi

Pn−1
xn−1

$

Output
 0 if

 if

xn−1 = 0
n−1

∏
i=0

xi xn−1 = 1

Idea 1
Use an oblivious transfer with as
selection bit, and sender inputs 0 and ’s

share of uses 3 random bits!

xn−1
Pn−2

n−1

∏
i=0

xi ⟹

Idea 2
 and don’t need the rerandomization

bit can reuse it for the OT!
Pn−2 Pn−1

$ ⟹

Output Phase

Pn−3 Pn−2
xn−2

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

×
⋯

⋯

Invariant

shares of and
n−2

∏
i=0

xi

n−2

∏
i=0

xi

Pn−1
xn−1

$

Output
 0 if

 if

xn−1 = 0
n−1

∏
i=0

xi xn−1 = 1

Idea 1
Use an oblivious transfer with as
selection bit, and sender inputs 0 and ’s

share of uses 3 random bits!

xn−1
Pn−2

n−1

∏
i=0

xi ⟹

Idea 2
 and don’t need the rerandomization

bit can reuse it for the OT!
Pn−2 Pn−1

$ ⟹

Output Phase

Pn−3 Pn−2
xn−2

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

×
⋯

⋯

Invariant

shares of and
n−2

∏
i=0

xi

n−2

∏
i=0

xi

Pn−1
xn−1

$

Output
 0 if

 if

xn−1 = 0
n−1

∏
i=0

xi xn−1 = 1

Idea 1
Use an oblivious transfer with as
selection bit, and sender inputs 0 and ’s

share of uses 3 random bits!

xn−1
Pn−2

n−1

∏
i=0

xi ⟹

×
×

Idea 2
 and don’t need the rerandomization

bit can reuse it for the OT!
Pn−2 Pn−1

$ ⟹

Output Phase

Pn−3 Pn−2
xn−2

Budget of
random bits

×
×
×

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

×
⋯

⋯

Invariant

shares of and
n−2

∏
i=0

xi

n−2

∏
i=0

xi

Pn−1
xn−1

$

Output
 0 if

 if

xn−1 = 0
n−1

∏
i=0

xi xn−1 = 1

Idea 1
Use an oblivious transfer with as
selection bit, and sender inputs 0 and ’s

share of uses 3 random bits!

xn−1
Pn−2

n−1

∏
i=0

xi ⟹

×
×

Thank you for your attention!

Questions?

