# **Random Sources in Secure Computation**

# Geoffroy Couteau, Adi Rosén





Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most *t* parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background



Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most *t* parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background

 Secure computation is impossible deterministically: randomness is required



Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most *t* parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed?
  Studied in many previous works.



Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most *t* parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed?
  Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.



Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most t parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed? Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

- We ask: how many players need to toss random coins?
- Motivation: you don't want to trust everyone's ability to toss high-quality random coins!







Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most *t* parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed?
  Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

- We ask: how many players need to toss random coins?
- Motivation: you don't want to trust everyone's ability to toss high-quality random coins!



Information-Theoretic Secure Computation

- *n* parties with inputs  $(x_1, \dots, x_n)$
- The adversary corrupts at most *t* parties
- Goal: computing  $f(x_1, \dots, x_n)$  without revealing more

# Background

- Secure computation is impossible deterministically: randomness is required
- Natural question: how much randomness is needed?
  Studied in many previous works.
- Motivation: producing high-quality randomness is hard; it should be treated as a scarce resource.

- We ask: how many players need to toss random coins?
- Motivation: you don't want to trust everyone's ability to toss high-quality random coins!



























# Second Result: Randomness vs Random Sources, and 1-Private AND

**Second Result:** the randomness complexity of 1-private AND

need much more randomness to use a minimal number of sources?

Proving tight bounds on randomness is notoriously very hard. Towards making progress, as in previous works, we focus on a natural functionality: the *n*-party AND.

- Best known protocol for 1-private, n-party AND: 8 bits, 2 sources (KOPRTV, TCC'19)
- **Question.** Can we match this bound with a single source?
- sources: we describe a protocol using only 6 bits and a single source.

• Question. What is the tradeoff between the number of sources and the randomness complexity? Do we

• Our result. Surprisingly, we manage to improve *both* the randomness complexity and the number of

























$$F(x_1, x_2, x_3, x_4, x_5)$$

![](_page_18_Picture_3.jpeg)

# Each source sends a random tape to each player

![](_page_19_Picture_2.jpeg)

$$F(x_1, x_2, x_3, x_4, x_5)$$

![](_page_19_Picture_4.jpeg)

#### Each player sets their random tape to the XOR of the tapes received

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

All parties run BGW with these tapes to compute  $F(x_1, x_2, x_3, x_4, x_4; r)$ 

**BGW** (Ben-Or, Goldwasser, Wigderson 1988): information-theoretic secure computation for any t < n/2. Any other IT protocol would work.

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

 $\chi_{5}$ 

All parties run BGW with these tapes to compute  $F(x_1, x_2, x_3, x_4, x_4; r)$ 

**BGW** (Ben-Or, Goldwasser, Wigderson 1988): information-theoretic secure computation for any t < n/2. Any other IT protocol would work.

![](_page_22_Figure_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_23_Picture_1.jpeg)

$$F(x_1, x_2, x_3, x_4, x_4)$$

![](_page_23_Picture_3.jpeg)

## Isolating the sources

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_4.jpeg)

$$F(x_1, x_2, x_3, x_4, x_4)$$

![](_page_24_Picture_6.jpeg)

## **Input Sharing**

![](_page_25_Figure_2.jpeg)

$$F(x_1, x_2, x_3, x_4, x_4)$$

![](_page_25_Picture_4.jpeg)

## **Input Sharing**

![](_page_26_Figure_2.jpeg)

$$F(x_1, x_2, x_3, x_4, x_4)$$

![](_page_26_Picture_4.jpeg)

#### **Outer Protocol**

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_27_Picture_5.jpeg)

![](_page_27_Figure_6.jpeg)

### **Outer Protocol**

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_28_Figure_4.jpeg)

### **Outer Protocol**

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

#### **Inner Protocol**

# Tape sharing

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)

# **Core Result:** *t* **sources, deterministic functionalities Tape sharing Inner Protocol**

![](_page_31_Picture_1.jpeg)

### **Inner Protocol**

# Tape sharing

![](_page_32_Figure_3.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

#### Summary of the protocol

![](_page_36_Figure_2.jpeg)

## **Security**

#### Summary of the protocol

![](_page_37_Figure_2.jpeg)

## Security

#### **Two cases**

(1) there is one honest source(2) A corrupts only the sources

![](_page_37_Picture_6.jpeg)

#### **Summary of the protocol**

![](_page_38_Figure_2.jpeg)

## **Security**

#### **Summary of the protocol**

![](_page_39_Figure_2.jpeg)

## **Security**

# **Motivation & Previous Work**

- AND is a basic building block of MPC, together with XOR (for which we already have tight — trivial — bounds)
- The randomness complexity of 1-private *n*-party AND has been studied in previous works
- Most recent result [TCC:KOPRTV'19]: AND can be computed using 8 bits (and two sources)

- *n* parties  $(P_0, \dots, P_{n-1})$  with respective inputs  $(x_0, \dots, x_{n-1})$  Output:  $\wedge_{i=0}^{n-1} x_i$
- At most one corrupted party (= no collusion)

# Setting

# Main Phase

![](_page_41_Picture_3.jpeg)

![](_page_41_Figure_4.jpeg)

# Main Phase

![](_page_42_Picture_3.jpeg)

![](_page_42_Figure_4.jpeg)

# Main Phase

![](_page_43_Picture_3.jpeg)

![](_page_43_Figure_4.jpeg)

# Main Phase

![](_page_44_Picture_3.jpeg)

![](_page_44_Figure_4.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Figure_3.jpeg)

![](_page_45_Figure_4.jpeg)

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Figure_4.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_47_Figure_3.jpeg)

![](_page_47_Figure_4.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_48_Figure_3.jpeg)

![](_page_48_Figure_4.jpeg)

# **Main Phase**

![](_page_49_Figure_3.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_52_Figure_2.jpeg)

![](_page_53_Figure_2.jpeg)

# **Output Phase**

![](_page_54_Figure_2.jpeg)

# **Output Phase**

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

# **Output Phase**

![](_page_56_Figure_2.jpeg)

![](_page_56_Figure_3.jpeg)

#### ldea 1

Use an oblivious transfer with  $x_{n-1}$  as selection bit, and sender inputs 0 and  $P_{n-2}$ 's share of  $\prod_{i=0}^{n-1} x_i \Longrightarrow$  uses 3 random bits!

![](_page_56_Picture_6.jpeg)

# **Output Phase**

![](_page_57_Figure_2.jpeg)

![](_page_57_Figure_3.jpeg)

#### ldea 1

Use an oblivious transfer with  $x_{n-1}$  as selection bit, and sender inputs 0 and  $P_{n-2}$ 's share of  $\prod_{i=0}^{n-1} x_i \Longrightarrow$  uses 3 random bits!

#### Idea 2

 $P_{n-2}$  and  $P_{n-1}$  don't need the rerandomization bit  $\$ \implies$  can reuse it for the OT!

![](_page_57_Picture_8.jpeg)

# **Output Phase**

![](_page_58_Figure_2.jpeg)

![](_page_58_Figure_3.jpeg)

#### ldea 1

Use an oblivious transfer with  $x_{n-1}$  as selection bit, and sender inputs 0 and  $P_{n-2}$ 's share of  $\prod_{i=0}^{n-1} x_i \Longrightarrow$  uses 3 random bits!

#### Idea 2

 $P_{n-2}$  and  $P_{n-1}$  don't need the rerandomization bit  $\$ \implies$  can reuse it for the OT!

![](_page_58_Picture_8.jpeg)

# **Output Phase**

![](_page_59_Figure_2.jpeg)

![](_page_59_Figure_3.jpeg)

#### ldea 1

Use an oblivious transfer with  $x_{n-1}$  as selection bit, and sender inputs 0 and  $P_{n-2}$ 's share of  $\prod_{i=0}^{n-1} x_i \Longrightarrow$  uses 3 random bits!

#### Idea 2

 $P_{n-2}$  and  $P_{n-1}$  don't need the rerandomization bit  $\$ \implies$  can reuse it for the OT!

![](_page_59_Picture_8.jpeg)

# Thank you for your attention!

![](_page_60_Picture_2.jpeg)

![](_page_60_Picture_3.jpeg)

## **Questions?**