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But it is possible even if we 
allow the adversary to corrupt 

all players that toss coins!
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Second Result: the 
randomness complexity 

of 1-private AND

•  Question. What is the tradeoff between the number of sources and the randomness complexity? Do we 
need much more randomness to use a minimal number of sources?

Proving tight bounds on randomness is notoriously very hard. Towards making progress, as in previous 
works, we focus on a natural functionality: the -party AND.

•  Best known protocol for -private, -party AND: 8 bits, 2 sources (KOPRTV, TCC’19)

•  Question. Can we match this bound with a single source?
•  Our result. Surprisingly, we manage to improve both the randomness complexity and the number of 
sources: we describe a protocol using only 6 bits and a single source.

n
1 n
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GMW computes the 
circuit gate-by-gate on 
shares of the input wires.


XOR gates are local. 


AND gates can be 
handled by consuming a 
Beaver triple

Use an Inner Protocol

GMW (Goldreich, Micali, Wigderson 1987 + 
Beaver 1995): IT secure computation for 
any  in the correlated randomness 
model. Any all-but-one IT protocol in the 
CR model would work.

t < n − 1
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Distributes a random Beaver triple 
among the deterministic parties

n ℱ𝖡𝖾𝖺𝗏𝖾𝗋
Inner Protocol -party BGWn

Exactly as the -source protocol, but with 
 sources.


Crucial difference: this is an input-independent 
protocol!
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Two observations

(1) there is one honest source 
(2)  corrupts only the sources𝒜
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2 One observation
no source ever sees an input-
dependent message, beyond 
the output!

Sources 
to players

No source 
involved

Sources 
to players

Input-
independent

Core Result:  sources, deterministic functionalitiest



- AND is a basic building block of MPC, together with XOR (for 
which we already have tight — trivial — bounds)


- The randomness complexity of 1-private -party AND has been 
studied in previous works


- Most recent result [TCC:KOPRTV’19]: AND can be computed 
using 8 bits (and two sources)

n

Second Result: 1-Private -Party AND with 6 Bits and 1 Sourcen

Motivation & Previous Work

Setting

-  parties  with respective inputs 

- Output: 

- At most one corrupted party (= no collusion)

n (P0, ⋯, Pn−1) (x0, ⋯, xn−1)
∧n−1

i=0 xi
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Thank you for your attention!

Questions?


