Pseudorandom Correlation Functions
from Variable-Density LPN

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Scholl

@ 'Y

Universite
de Paris




Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

(D

©



Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

One-time pad o\ »
L = QO

Correlation: R, = Ry

(Equality correlation)

©



Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + + 4+

One-time pad R GMW YA
Ry S __&, i & 4,
2 =~ QU

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp

%

(Equality correlation) (Oblivious transfer correlation)

©



Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

One-time pad N GMW N AN

‘l

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp

(Equality correlation) (Oblivious transfer correlation)

In the computational world, can we compress correlated randomness?



Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + + 4+

One-time pad R GMW YA
Ry S __&, i & 4,
2 =~ QU

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp

%

(Equality correlation) (Oblivious transfer correlation)

Equality correlations can be compressed using a PRG:

+ 4

seed 4

seedp @

R, = PRG(seed,) Ry = PRG(seedp)



Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + 4

GMW S
Sy < @,%

One-time pad o\ »
L = QO

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp
(Equality correlation) (Oblivious transfer correlation)
Equality correlations can be compressed using a PRG: Can OT correlations be compressed using a PCG?
++i+\ +
seed 4 UX

seedp seedy seedp
@ Gen(1%)

Expand(i, seed;)
R, = PRG(seed,) R, = PRG(seedp) (R, Sy) (Rg, Sp)



Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

Preprocessing phase Online phase




Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the

correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction

Gen(1%)

——

seed 4 4) \b seedj

Interactive protocol with short
communication and computation;
Alice and Bob store a small seed

afterwards.

Online phase

Preprocessing phase




Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction ‘Silent’ co.mputation

Gen(1%)

——

seed 4 4) \b seedj O

.39
o

2 W

OO

5 e

Expand(seed,) : Expand(seedp)
Interactive protocol with short The bulk of the preprocessing
communication and computation; phase is offline: Alice and Bob
Alice and Bob store a small seed stretch their seeds Iinto large
afterwards. pseudorandom correlated strings.

Preprocessing phase Online phase




Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction ‘Silent’ computation Non-cryptographic

B Q@

Gen(1%)

——

.39
o

 e——

2 W

: o
seed d \b seed 0 I 00 4-/ \.y
A B 5 J(x,y)
Expand(seed,) : Expand(seedp)

Interactive protocol with short The bulk of the preprocessing Alice and Bob consume the
communication and computation; phase is offline: Alice and Bob preprocessing material in a fast,
Alice and Bob store a small seed stretch their seeds Iinto large non-cryptographic online phase.
afterwards. pseudorandom correlated strings.

Preprocessing phase Online phase




Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

History This work

. efficient

. doable . linear correlation
. purely theoretical . non-linear correlation



Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

History This work

o 2-party, linear correlation, from OWF (use a PRG)
 Multi-party linear correlations, from OWF [GI99, CDI03]

 All correlations, from iO [BCGIO17]
» All additive correlations, from LWE [BGI15, DHRW16]

. efficient

. doable . linear correlation
. purely theoretical . non-linear correlation



Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))

looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

History

This work

o 2-party, linear correlation, from OWF (use a PRG)
 Multi-party linear correlations, from OWF [GI99, CDI03]

 All correlations, from iO [BCGIO17]
» All additive correlations, from LWE [BGI15, DHRW16]

 OT correlation, from DDH [BGI16, BCGIO17

* \ector oblivious linear evaluation, from LPN [BCGI18]
 OT correlation, from LPN [BCGIKS19]

* Bilinear correlations, from LPN [BCGIKS19]
* OLE correlations, from ring-LPN [BCGIKS20]

. efficient

. doable . linear correlation
. purely theoretical . non-linear correlation



Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(lﬂ) — (seedy, seedp) such that (1) (Expand(A, seed,), Expand(B, seedg))

looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

History

This work

o 2-party, linear correlation, from OWF (use a PRG)

PCGs are limited to a one-time stretch of the seeds into
 Multi-party linear correlations, from OWF [GI99, CDI03]

a bounded polynomially-long pseudorandom correlation.

 All correlations, from iO [BCGIO17]

g . Can we achieve the dream result of an
 All additive correlations, from LWE [BGI15, DHRW16] indefinitely reusable source of correlated

pseudorandomness?

 OT correlation, from DDH [BGI16, BCGIO17

* \ector oblivious linear evaluation, from LPN [BCGI18]
 OT correlation, from LPN [BCGIKS19]

* Bilinear correlations, from LPN [BCGIKS19]

* OLE correlations, from ring-LPN [BCGIKS20]

. efficient

. doable . linear correlation
. purely theoretical . non-linear correlation



Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(lﬂ) — (seedy, seedp) such that (1) (Expand(A, seed,), Expand(B, seedg))

looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

History

e 2-party, linear correlation, from OWF (use a

 Multi-party linear correlations, from OWF [GI99, CDI03]

 All correlations, from iO [BCGIO17]

g . Can we achieve the dream result of an
 All additive correlations, from LWE [BGI15, DHRW16] indefinitely reusable source of correlated

pseudorandomness?

 OT correlation, from DDH [BGI16, BCGIO17

* \ector oblivious linear evaluation, from LPN
 OT correlation, from LPN [BCGIKS19]

* Bilinear correlations, from LPN [BCGIKS19]

* OLE correlations, from ring-LPN [BCGIKS20]

. efficient

This work

PRG) PCGs are limited to a one-time stretch of the seeds into

a bounded polynomially-long pseudorandom correlation.

BCGI18]

ldea: we could use the doubling trick... but it

- doable - linear correlation prevents accessing the correlations incrementally
. purely theoretical . non-linear correlation



Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(lﬂ) — (seedy, seedp) such that (1) (Expand(A, seed,), Expand(B, seedg))

looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

History

e 2-party, linear correlation, from OWF (use a

 Multi-party linear correlations, from OWF [GI99, CDI03]

 All correlations, from iO [BCGIO17]

g . Can we achieve the dream result of an
 All additive correlations, from LWE [BGI15, DHRW16] indefinitely reusable source of correlated

pseudorandomness?

 OT correlation, from DDH [BGI16, BCGIO17

* \ector oblivious linear evaluation, from LPN
 OT correlation, from LPN [BCGIKS19]

* Bilinear correlations, from LPN [BCGIKS19]

* OLE correlations, from ring-LPN [BCGIKS20]

. efficient

This work

PRG) PCGs are limited to a one-time stretch of the seeds into

a bounded polynomially-long pseudorandom correlation.

BCGI18]

We want a pseudorandom correlation function.
. doable . linear correlation
. purely theoretical . non-linear correlation



Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

&




Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

&

2 .1

Correctness & security:

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box
access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) iS
indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).
« Same condition in the other direction.



Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

WPRF: [, is indistinguishable from a random function
when evaluated on random inputs.

&

2 .1

Correctness & security:

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box
access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) iS
indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).
« Same condition in the other direction.



Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

WPRF: [, is indistinguishable from a random function
when evaluated on random inputs.

@ How low can we go?
Copyright Yuval Ishai - 2020

&

2 .1

Correctness & security:

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box
access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) iS
indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).
« Same condition in the other direction.



Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

WPRF: [, is indistinguishable from a random function
when evaluated on random inputs.

@ How low can we go?
Copyright Yuval Ishai - 2020

Efficiency of low-end
cryptography

&

2 .1

Correctness & security:

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box
access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) is
indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).
« Same condition in the other direction.

Feasibility
of high-end
cryptography

Limitations
of learning
theory




Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

WPRF: [, is indistinguishable from a random function
when evaluated on random inputs.

@ How low can we go?
Copyright Yuval Ishai - 2020

~
’FKA< ) Fy (- >’
Highly parallelizable .
stream cipher, simple Efficiency of low-end
Correctness & security: MAGCs... cryptography

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box

access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) is

indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).

e Same condition in the other direction.

Feasibility
of high-end
cryptography

Limitations
of learning
theory




Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

WPRF: [, is indistinguishable from a random function
when evaluated on random inputs.

@ How low can we go?
Copyright Yuval Ishai - 2020

- If a class contains a
Efficiency of low-end WPRF, then it cannot

cryptography be learned under the
uniform distribution

&

Highly parallelizable

’FKA< ) Fy (- >’
stream cipher, simple

Correctness & security: MACs...

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box
access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) iS

indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).

e Same condition in the other direction.

Feasibility
of high-end
cryptography

Limitations
of learning
theory




Pseudorandom Correlation Functions and Low-Complexity WPRFs

Correlated pseudorandom functions Low-Complexity Weak PRFs

WPRF: [, is indistinguishable from a random function
when evaluated on random inputs.

@ How low can we go?
Copyright Yuval Ishai - 2020

- If a class contains a
Efficiency of low-end WPRF, then it cannot

cryptography be learned under the
uniform distribution

&

Highly parallelizable

’FKA< ) Fy (- >’
stream cipher, simple

Correctness & security: MACs...

* Black-box access to samples of the form
(Fg (%), Fi (x)) are indistinguishable from black-box

access to random samples from a target correlation.
» From the viewpoint of Alice, each F KB(x) iS

indistinguishable from a random value sampled
conditioned on satisfying the correlation with F KA(x).

e Same condition in the other direction. i0, MPC, FHE...

Feasibility
of high-end
cryptography

Limitations
of learning
theory




Pseudorandom Correlation Functions and Low-Complexity WPRFs

What we show in the paper

 If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,
then there is a pseudorandom correlation function for the OT correlation.

. If you have Function Secret Sharing (FSS) for the class C¥ = {fif, : fi,f>» € C} where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear
correlation (authenticated Beaver triples, OLE, inner products, etc).




Pseudorandom Correlation Functions and Low-Complexity WPRFs

What we show in the paper

 If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,
then there is a pseudorandom correlation function for the OT correlation.

. If you have Function Secret Sharing (FSS) for the class C¥ = {fif, : fi,f>» € C} where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear
correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any f € C, share(f) — (k;, k,) such that Vx, Eval(k,, x) + Eval(k,, x) = f(x), yet k; hides f.



Pseudorandom Correlation Functions and Low-Complexity WPRFs

What we show in the paper

 If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,
then there is a pseudorandom correlation function for the OT correlation.

. If you have Function Secret Sharing (FSS) for the class C¥ = {fif, : fi,f>» € C} where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear
correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any f € C, share(f) — (k;, k,) such that Vx, Eval(k,, x) + Eval(k,, x) = f(x), yet k; hides f.

High-End

Any WPRF + FSS for all circuits [BGI15, DHRW16]

 Many limitations: imperfect correctness, requires very
powerful assumptions (FHE-style)
* Unlikely to lead to concretely efficient candidates



Pseudorandom Correlation Functions and Low-Complexity WPRFs

What we show in the paper

 If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,
then there is a pseudorandom correlation function for the OT correlation.

. If you have Function Secret Sharing (FSS) for the class C¥ = {fif, : fi,f>» € C} where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear
correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any f € C, share(f) — (k;, k,) such that Vx, Eval(k,, x) + Eval(k,, x) = f(x), yet k; hides f.

High-End Low-End
Any WPRF + FSS for all circuits [BGI15, DHRW16] Using efficient FSS?
« Many limitations: imperfect correctness, requires very * FSS for sums of point functions exists from OWFs [BGI16]
powerful assumptions (FHE-style) * Existing constructions are very efficient

* Unlikely to lead to concretely efficient candidates « — (Can we have a WPRF in this low complexity class?



Pseudorandom Correlation Functions and Low-Complexity WPRFs

What we show in the paper

 If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,
then there is a pseudorandom correlation function for the OT correlation.

. If you have Function Secret Sharing (FSS) for the class C¥ = {fif, : fi,f>» € C} where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear
correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any f € C, share(f) — (k;, k,) such that Vx, Eval(k,, x) + Eval(k,, x) = f(x), yet k; hides f.

High-End Low-End
Any WPRF + FSS for all circuits [BGI15, DHRW16] Using efficient FSS?
« Many limitations: imperfect correctness, requires very * FSS for sums of point functions exists from OWFs [BGI16]
powerful assumptions (FHE-style) * Existing constructions are very efficient
* Unlikely to lead to concretely efficient candidates « —> (Can we have a WPRF in this low complexity class?

This talk: | will present a step-by-step construction of a PCF for OT, from which the new WPRF candidate emerges
naturally. The construction does not go through FSS since for the specific case of OT, puncturable PRFs suffice.



| ow-Complexity Weak Pseudorandom Functions

Superpolynomial P

regime Ncl

Depth > 3




| ow-Complexity Weak Pseudorandom Functions

Superpolynomial P

regime . e Ncl

OWF [GGM86]

Depth > 3




| ow-Complexity Weak Pseudorandom Functions

Superpolynomial P

regime . e Ncl

Factoring [Kha93]

OWF [GGM86]

DDH [NR97]

Depth > 3




| ow-Complexity Weak Pseudorandom Functions

Superpolynomial P
regime * Ncl Factoring [Kha93]
RLF [AR16]
OWF [GGM86] :
DDH [NR97]

Depth > 3




| ow-Complexity Weak Pseudorandom Functions

Superpolynomial P
regime * Ncl Factoring [Kha93]
RLF [AR16]
OWF [GGM88] :
DDH [NR97] Heuristic [BKFL94]

Depth > 3




| ow-Complexity Weak Pseudorandom Functions

P




| ow-Complexity Weak Pseudorandom Functions

P




| ow-Complexity Weak Pseudorandom Functions




| ow-Complexity Weak Pseudorandom Functions

OWF [GGM86]

DDH [NR97]
Factoring [NRROO]
LWE [BPR12]

LMN89] . .. ...




| ow-Complexity Weak Pseudorandom Functions

Heuristic [BIPSW18]

OWF [GGM86]

DDH [NR97]
Factoring [NRROO]
LWE [BPR12]

LMN89] . .. ...




| ow-Complexity Weak Pseudorandom Functions

Heuristic [BIPSW18]

OWF [GGM86]

DDH [NR97]
Factoring [NRROO]
LWE [BPR12]

LMN89] . .. ...




| ow-Complexity Weak Pseudorandom Functions

Heuristic [BIPSW18]

OWF [GGMS80]
Heuristic [ABGKR14]
... Broken in [BR17]
DDH [NR97]
Factoring [NRROO]
LWE [BPR12]

LMN89] . .. ...




| ow-Complexity Weak Pseudorandom Functions

Heuristic [BIPSW18]

OWF [GGM86]

DDH [NR97]
Factoring [NRROO]
LWE [BPR12]

Depth 2, one layer of ANDs,
followed by a single XOR

LMN89] . .. ...




The Class of XNF Formulas

XNF formulas are (polynomial-size) depth-2 boolean circuits over literals (inputs and their negation) with one layer of
(arbitrary fan-in) AND gates, followed by a single (arbitrary fan-in) XOR gate.

Example: (" X; AX, A X)) @ (X3 A XA X ) D -

We get the following conjecture: XNF formulas are (subexponentially) hard to learn under the uniform distribution.

Concrete structure:



The Class of XNF Formulas

XNF formulas are (polynomial-size) depth-2 boolean circuits over literals (inputs and their negation) with one layer of
(arbitrary fan-in) AND gates, followed by a single (arbitrary fan-in) XOR gate.

Example: (" X; AX, A X)) @ (X3 A XA X ) D -

We get the following conjecture: XNF formulas are (subexponentially) hard to learn under the uniform distribution.

Concrete structure:

K . The key tells which input bits to negate

SN

N




Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

A construction from LPN

N
o S ——a
seed Ul seedp

() g

Expand(i, seed,)
Y N\

(u,wy e F,xF, (V,wp) e F,xXF,

Oblivious transfer correlation:

— — —_—  —

At Wp=u kv



Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

A construction from LPN

1. Reduction to subfield-VOLE

AN [IKNPO3]: subfied vector-OLE correlation + correlation-robust

e & — hash functions gives (pseudorandom) OT correlations.

seed Ul seedp
A ' .
R Gen(17%) AR , Subfield vector-OLE !
Expand(i, seed;) (u, wy) € X, (x, wp) € b X,
/ \ — — —
WpT+ Wp=X-1U

(u,wy e F,xF, (V,wp) e F,xXF,

Oblivious transfer correlation:

— — —_—  —

At Wp=u kv



Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

A construction from LPN

1. Reduction to subfield-VOLE

AN [IKNPO3]: subfied vector-OLE correlation + correlation-robust
&5 N P ~ hash functions gives (pseudorandom) OT correlations.
seedy & seedp .
AR Gen(1%) oy , Subfield vector-OLE !
Expand(i, seed,) (u,wy) €y XE, (x, Wp) € Fy X 2,
—> —> —>
. / )\ Wrpt+ Wp=X-U
(u,wy) € XIE, (v,wp) € X,
Intuition. the i-th (string-) OT is:

- (Sps $1) = (H(_WB,i)a H(x — WB,i))
- (b,sp) = (u;, H(WA,Z'))
_)A + TV’B — U * vV where H is a correlation-robust hash function.

Oblivious transfer correlation:




Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

N
A N ~ A
seed Ul seedp

mp Gen(lH g

Expand(i, seed;)
4 N

(w,wy) € FIXF, (x, wp) € F) X F,

—>

X U

W, + Wp

New target

A construction from LPN

1. Reduction to subfield-VOLE
2. Constructing a PCG for subfield-VOLE

Three steps:

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

. —
@ Construction for a random ¢-sparse vector u
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN



Pseudorandom Correlation Generators - Walkthrough

Construction for a random unit vector u’ A construction from LPN
from puncturable pseudorandom functions
1. Reduction to subfield-VOLE
, ‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, seedp = (7, Three steps:

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

R
S~~~ &> o~
seed, UX seedp

[ Gen(1) s

Expand(i, seed;)
¥ X

(w,wy) € FSxXF, (x, Wp) € Fu X F,

—

Wi+ Wp=x-1u




Pseudorandom Correlation Generators - Walkthrough

Construction for a random unit vector u’ A construction from LPN
from puncturable pseudorandom functions
1. Reduction to subfield-VOLE
, ‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, . seed B — (7, Three steps:
GGM Construction for a random unit vector u’
from puncturable pseudorandom functions
RN
A~ | — D 4
seed, UX seedp
[ Gen(1") [
{ Expand(i, seed;) \
(w,wy € xF,, (x, wp) € Fu x F,

I%IDD!;IDDDI%IDDI;IDDDDI%I



Pseudorandom Correlation Generators - Walkthrough

Construction for a random unit vector u’ A construction from LPN
from puncturable pseudorandom functions
1. Reduction to subfield-VOLE
’ . ‘ (a: u, =1) 2. Constructing a PCG for subfield-VOLE
seed A = (x, K ) seed B — (7, Three steps:
GGM Construction for a random unit vector u’
from puncturable pseudorandom functions
RN
A~ | — D 4
seed UX seedp
[ Gen(1") [
{ Expand(i, seed;) \
(w,wy € xF,, (x, wp) € Fu x F,

I%IDD!;IDDDI%IDDI;IDDDDI%I



Pseudorandom Correlation Generators - Walkthrough

Construction for a random unit vector u’ A construction from LPN
from puncturable pseudorandom functions
1. Reduction to subfield-VOLE
’ . ‘ (@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed A= (x, K ) seed B = (7, Three steps:
GGM Construction for a random unit vector u
from puncturable pseudorandom functions
EN
/ \
seed, UX seedp
[ Gen(1)  mum
{ Expand(i, seed;) \
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: . —>
Construction for a random unit vector u A construction from LPN
from puncturable pseudorandom functions

1. Reduction to subfield-VOLE
’ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE

.... ] . D x) Three steps:

:

: —
u,

seedy = (x,K) : seedp = (

GGM Construction for a random unit vector u

from puncturable pseudorandom functions

R
S~~~ &> o~
seed, UB seedp

N
AN AARA A8
NAANTR T

(w,wy) € FSxXF, (x, Wp) € Fu X F,

—

Wi+ Wp=x-1u
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Pseudorandom Correlation Generators - Walkthrough

: . —>
Construction for a random unit vector u A construction from LPN
from puncturable pseudorandom functions

1. Reduction to subfield-VOLE
‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE

:

' —>
seedy = (x, K) : seed g=(u ,....,. @D x) Three steps:
W, < FullEval(K) wp < Insert(x @ Fyg(a), FullEval(K,,,))
GGM Construction for a random unit vector u’
from puncturable pseudorandom functions
R
seed, UX seedp
A G
{ Expand(i, seed;) \

(w,wy) € FSxXF, (x, Wp) € Fu X F,
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Pseudorandom Correlation Generators - Walkthrough

. —_—>
Construction for a random f-sparse vector u
via t parallel repetitions of (1)

A construction from LPN

1. Reduction to subfield-VOLE
’ ! (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, Kl) seedp = ( U, {061}’ FKl(al) @D x) Three steps:
K2 § (u,, K{al},FKz(az) @ x)

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

Kt (7t9 Kfat}a FKf(at) @ X)

@ Construction for a random #-sparse vector u’

—
- Write U as a sum of ¢ unit vectors u -+ u / via ¢ parallel repetitions of (1)

* Apply the previous construction f times (with the same Xx)
» After expansion, the parties locally sum their shares:

[ 5 5
Dv.|e| DV )=« Dwi=x
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Construction for a pseudorandom vector u

using dual-LPN
1. Reduction to subfield-VOLE

’ /Same seeds asin step (2)\ ! 2, Constructing a PCG for subfield-VOLE

seedy seedp Three steps:

A construction from LPN

[-sparse vector

— \6 > > _ . —
(x, w A) u, w B) @ Construction for a random unit vector u

from puncturable pseudorandom functions

The LPN assumption - primal

. —
@ Construction for a random ¢-sparse vector u
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN
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using dual-LPN

A construction from LPN
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, Same seeds as in step (2)\ ! 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

—_ \6 > > . _ N
(x, w A) u, w B) @ Construction for a random unit vector u

from puncturable pseudorandom functions

The LPN assumption - primal
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Pseudorandom Correlation Generators - Walkthrough

- —
Construction for a pseudorandom vector u

using dual-LPN A construction from LPN

1. Reduction to subfield-VOLE
, Same seeds as in step (2)\ ! 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

— \6 > > _ . —
(x, w A) u, w B) @ Construction for a random unit vector u

from puncturable pseudorandom functions

The LPN assumption - dual

@ Construction for a random #-sparse vector u’

, - . ~ $ via t parallel repetitions of (1)
. —_—
@ Construction for a pseudorandom vector u
using dual-LPN

Random matrix Sparse noise




Pseudorandom Correlation Generators - Walkthrough

. —_—
Construction for a pseudorandom vector u
using dual-LPN

’ Same seeds as in step (2) !

Se?dA t-sparse vector Se§dB

(X, W) \(- 7, W )

(x, H-w),) (H-u,H-Wwp)

H-Wy+H-Wg=H-(x-uw)=x-(H-u)

/

Pseudorandom under the LPN assumption

A construction from LPN

1. Reduction to subfield-VOLE
2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector u’
from puncturable pseudorandom functions

@ Construction for a random #-sparse vector u’
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN



Pseudorandom Correlation Functions

Wrapping-up Can we turn this into a PCF?

—

WA+WB = XU The expansion of the PCG boils down to the

computation of

seedp

A I

Big random matrix X- e

> —> Where ¢ is a very sparse vector, and (the shares of) the
(xa WA) (uaWB) . — C . . .
entries of x - e can be computed individually in log-time.

|seedy | ® A -1 |seedg| ~ A -1-logn Intuitively, to get a PCF, we want to

« make H exponentially big, and

A is a security parameter, t is an LPN 2 |
y P » compute each H. - (x - ¢€') in time polylog(dim(H))

noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a |
correlation-robust hash function. Make H exponentially sparse?

ldea:



Pseudorandom Correlation Functions
If H is exponentially large and exponentially sparse...
Then H - € is sparse, hence not pseudorandom
2 / » Ea

X e
Denser, smaller matrix

Exp. big sparse matrix



Pseudorandom Correlation Functions
If H is exponentially large and exponentially sparse... If H is d
Then H - "¢ is sparse, hence not pseudorandom Then H i
o m KR

X e
Denser, smaller matrix

Exp. big sparse matrix

[ ones per row «ee [ ONES perrow

Having our cake and eating it too? e

/e,
What if we make H and € exponentially large, with
variable density? | | ]
\_
Description: 24
€ e <_>
2t t-2

« A row of H has d blocks, each block has t sub-blocks
of size 2' with a single random 1.

« ¢ is distributed as a row of H.
. We allow up to 2¢ rows; think: d ~ t ~ ]

¢ 24
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Equation:

The key tells which input bits to negate:

K:ie ca;e a mm- —

—

X

N ) ) () Q) The circuit
Is fixed

Candidate low-complexity WPREF:
en=\|x|=|K|=¢t-d-(d—1)/2

1/3
. Security up to 2¢=2"" samples
1/3
against 2" -time adversaries?




Security of Variable-Density LPN - Linear Tests

A tremendous number of attacks on LPN have been published...

e Gaussian Elimination attacks e Information Set Decoding Attacks
e Standard gaussian elimination e Prange’s algorithm [Prange62]
e Blum-Kalai-Wasserman [J.ACM:BKW03] e Stern’s variant [ICIT:Stern88]
o Sample-efficient BKW [A-R:Lyu05] e Finiasz and Sendrier’s variant [AC:FS09]
e Pooled Gauss [CRYPTO:EKM17] e BJMM variant [EC:BJMM12]
e Well-pooled Gauss [CRYPTO:EKM17] e May-Ozerov variant [EC:MO15]
e [ eviel-Fougue [SCN:LFOG6] e Both-May variant [PQC:BM18]
e Covering codes [JC:GJL19] e MMT variant [AC:MMT11]
e (Covering codes+ [BTV15] o Well-pooled MMT [CRYPTO:EKM17]
e Covering codes++ [BV:AC16] e BLP variant [CRYPTO:BLP11]
e Covering codes+++ [EC:ZJW16] e Other Attacks

Generalized birthday [CRYPTO:Wag02]
Improved GBA [Kirchner11]
Linearization [EC:BM97]

Linearization 2 [INDO:Saa07]
Low-weight parity-check [Zichron17]
Low-deg approx [ITCS:ABGKR17]

e Statistical Decoding Attacks
e Jabri’'s attack [ICCC:Jab01]
e QOverbeck’s variant [ACISP:Ove06]
e FKlI's variant [Trans.IT:FKIO6]
e Debris-Tillich variant [ISIT:DT17]




Security of Variable-Density LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: a/l these attacks fit in the
same framework, the linear test framework.

Game
1.Send G to ( i

Linear Test
Framework

e e — %

returns a test vector
v computed from G in
unbounded time

e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk
e Standard gaussian elimination Prange’s algorithm [Prange62]
e Blum-Kalai-Wasserman [J. ACM:BKWO03] ¢ Stern’s variant [ICIT:Stern88]

e Sample-efficient BKW [A-R:Lyu05] Finiasz and Sendrier’s variant [AC:FS09] _ .
BJMM variant [EC:BJMM12]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17] May-Ozerov variant [EC:MO15] +
Both-May variant [PQC:BM18]

Leviel-Fouque [SCN:LFO6]
MMT variant [AC:MMT11]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]
Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTO:Wag02]

Jabri's attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o

The adversary wins in the distribution induced by

(over a random choice of secret and sparse
noise) is non-negligibly biased.

([ ]
o
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]

e Debris-Tillich variant [ISIT:DT17] Low=meigihl REI-Chees IZIehant 7]

Low-deg approx [ITCS:ABGKR17]




Security of Variable-Density LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: a/l these attacks fit in the
same framework, the linear test framework.

Game
5 H
Linear Test 1. Send H 10 -
ﬁ
Framework
. CP
2. hf returns a test vector
Vcomputed from H in
unbounded time
e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk

The adversary wins in the distribution induced by

e Standard gaussian elimination

e Blum-Kalai-Wasserman [J.ACM:BKWO3]
o Sample-efficient BKW [A-R:Lyu05]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17]
Leviel-Fouque [SCN:LFO6]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]

Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTOW&QOZ]

o
Jabri’s attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o
([
o

Prange’s algorithm [Prange62]
Stern’s variant [ICIT:Stern88]

Finiasz and Sendrier’s variant [AC:FS09] _ . .
BJMM variant [EC:BJMM12]

May-Ozerov variant [EC:MO15] H

Both-May variant [PQC:BM18]

MMT variant [AC:MMT11]

(over a random choice of secret and sparse
noise) is non-negligibly biased.

([
[
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]
([

Debris-Tillich variant [ISIT:DT17] OISRl [PEILEnEels | Zeieiif)
Low-deg approx [ITCS:ABGKR17]
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i

H. H, =1+0+ -+ —+

T

] After w rounds, a set of bins is good if the fraction of bins with an
odd number of ballsisin [1/3,2/3].

weight(V) = w

Q)

If > w/2 sets of bins are good, the bias of the distribution is 2~
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. . 2!
Using an Azuma-style concentration bound

2¢ .
I " ® — ) . _Q(t) " °
(McDiarmid’s bounded difference inequality): » Union bound: § , ( f) exp(—£2(¢ - 27)) is 2 fr>100-d
£=0i"1

W .
o l#{bad Sets>5}] Sexp<—£2(t-2)> . Biasof7-(H-7):7.(@Hi.7i)ﬁbiasof7.(Hi.?i) Vi

T T

T After w rounds, a set of bins is good if the fraction of bins with an
odd number of ballsisin [1/3,2/3].

weight(V) = w

Q(t).

If > w/2 sets of bins are good, the bias of the distribution is 2~
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. . 2!
Using an Azuma-style concentration bound

2¢ .
i . N i« D—>0)
(McDiarmid’s bounded difference inequality): » Union bound: Z ( Lﬂ) cexp(—Q(r - 2)) is 272t r > 100 - d.

¢=2""

W .
o l#{bad Sets>3}] Sexp<—£2(t-2)> . Biasof7-(H-7):7.(@Hi.7i)ﬁbiasof7.(Hi.?i) Vi

—81) Hyer the choice of H, the

Q)

Conclusion: with probability at least 1 — 2
bias of the distribution with respect to any test vector v is at most 2~

T

T After w rounds, a set of bins is good if the fraction of bins with an
odd number of ballsisin [1/3,2/3].

weight(V) = w

f > w/2 sets of bins are good, the bias of the distribution is 27**?.
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Security of Variable-Density LPN - Algebraic Attacks

d I
Recall the alternative formulation of the candidate: Fr(x) = @ @ /\ <xl-,jf D Ki,jf> F(x & K), where F(x) = @ @ /\ X ¢

i=1 j=1 ¢=1 i=1 j=1 =1

Resistance against algebraic attacks:

Algebraic attacks: find

be broken using ~ |x|"

ow-degree polynomials (p, g) such that for any x, F(x) - g(x) = p(x). Then the WPRF candidate can

samples, where m > deg(p), deg(qg).

Note: the only previous candidate WPRF in ACO[ @ | of [ABGKR15] was broken (in quasi-polynomial time) in [BR17], using an

algebraic attack.

Claim: for any K, the rational degree m = min{deg(r) | Fx-r=0 VvV (F, @ 1) -r =0} of Fyis at least d.

r=0

Follows from known results [I\/IJSC16] Fis a direct sum of triangular functions, where the d-th triangular function is given by

TAx)=x D xx,D -

- P /\ x;, where d’ = d(d — 1)/2. The d-th triangular function has rational degree d, and a direct
k=d'—d

sum of functions has rational degree lower bounded by the largest rational degree.
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Recall the alternative formulation of the candidate: Fp(x) = @ @ /\ <x,-,jf D Ki,j,f) F(x & K), where F(x) = @ @ /\ Xi gt

=1 j=1 =1 =1 j=1 =1

See the paper:

_ ACY attackers

- Low-degree polynomial tests (generalization of the linear test framework)
- Statistical query algorithms (generalization of the Linial, Mansour, and Nisan algorithm)
- Linear cryptanalysis (as formalized by Miles and Viola [MV11])

All cannot break the new candidate.



Security of Variable-Density LPN - and Many More!

d ! l
Recall the alternative formulation of the candidate: Fp(x) = @ @ /\ <x,-,jf D Ki,j,f) F(x & K), where F(x) = @ @ /\ Xi gt

=1 j=1 =1 =1 j=1 =1

See the paper:

_ ACY attackers

- Low-degree polynomial tests (generalization of the linear test framework)
- Statistical query algorithms (generalization of the Linial, Mansour, and Nisan algorithm)
- Linear cryptanalysis (as formalized by Miles and Viola [MV11])

All cannot break the new candidate.

Can you break it?
1/3
Challenge: breaking the candidate using less than 200 time and samples, with
d =t = O(n'"). Note: the variant where x ..z 1S replaced by x; , also resists the same

attacks! (And the conjectured security bound becomes 20(\/_) (which is tight!)).
| can also provide concrete challenge parameters! E.g. t = 150, d = 40, 2¢ samples.
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Sample Applications

Of PCFs

Secure computation with one-time, indefinitely reusable,
short setup, for correlations such as OT, vector OLE over
larger fields, (authenticated) Beaver triples, etc.
Black-box 2-round secure 2-party computation, with fully-
reusable preprocessing

Preprocessing NIZKs with fully reusable preprocessing
Homomorphic secret sharing for constant-degree
polynomials

Programmable PCFs (gives applications to NV -party
secure computation for N > 2)

. applications to secure computation and zero-knowledge

- applications to learning theory

. other applications

Of the new WPRF

Assuming VD-LPN,

- XNF are subexponentially hard to learn under the uniform
distribution

- Sparse polynomials are subexponentially hard to learn
under some (artificial) distribution
—> upcoming improvements!

But also...

- Correlation-robust hash functions

- XOR-RKA secure PRGs and WPRFs (first candidate
without multilinear maps)

Simply because getting access to random samples of the
form (x, Fi(x)) and (x, Fgga(x)) for an offset A does not

help: Fgga(x) = Fp(x @ A), and x@ A is randomly
distributed.



Thank You for Your Attention!

Questions?




