Pseudorandom Correlation Functions from Variable-Density LPN

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Scholl

CITS I I I I I Université de Paris

A source of secret correlated randomness is an extremely useful resource in secure protocols:

A source of secret correlated randomness is an extremely useful resource in secure protocols:

A source of secret correlated randomness is an extremely useful resource in secure protocols:

A source of secret correlated randomness is an extremely useful resource in secure protocols:

In the computational world, can we compress correlated randomness?

A source of secret *correlated* randomness is an extremely useful resource in secure protocols:

Equality correlations can be *compressed* using a PRG:

A source of secret *correlated* randomness is an extremely useful resource in secure protocols:

Equality correlations can be *compressed* using a PRG:

correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Pseudorandom correlation generator: Gen $(1^{\lambda}) \rightarrow (\text{seed}_A, \text{seed}_B)$ such that (1) (Expand(A, seed_A), Expand(B, seed_B)) looks like n samples from the target correlation, and (2) Expand(A, seed_A) looks 'random conditioned on satisfying the

correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Pseudorandom correlation generator: Gen $(1^{\lambda}) \rightarrow (\text{seed}_A, \text{seed}_B)$ such that (1) (Expand(A, seed_A), Expand(B, seed_B)) looks like n samples from the target correlation, and (2) Expand(A, seed_A) looks 'random conditioned on satisfying the

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Pseudorandom correlation generator: Gen $(1^{\lambda}) \rightarrow (\text{seed}_A, \text{seed}_B)$ such that (1) (Expand(A, seed_A), Expand(B, seed_B)) looks like n samples from the target correlation, and (2) Expand(A, seed_A) looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Alice and Bob consume preprocessing material in a fast, non-cryptographic online phase.

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

History

: linear correlation

: non-linear correlation

This work

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

History

- 2-party, linear correlation, from OWF (use a PRG)
- Multi-party linear correlations, from OWF [GI99, CDI05]
- All correlations, from iO [BCGIO17]
- All additive correlations, from LWE [BGI15, DHRW16]

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

History

- 2-party, linear correlation, from OWF (use a PRG)
- Multi-party linear correlations, from OWF [GI99, CDI05]
- All correlations, from iO [BCGIO17]
- All additive correlations, from LWE [BGI15, DHRW16]
- OT correlation, from DDH [BGI16, BCGI017]
- Vector oblivious linear evaluation, from LPN [BCGI18]
- OT correlation, from LPN [BCGIKS19]
- Bilinear correlations, from LPN [BCGIKS19]
- OLE correlations, from ring-LPN [BCGIKS20]
 - : efficient
 - : doable
 - : purely theoretical

- : linear correlation
- : non-linear correlation

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

History

- 2-party, linear correlation, from OWF (use a PRG)
- Multi-party linear correlations, from OWF [GI99, CDI05]
- All correlations, from iO [BCGIO17]
- All additive correlations, from LWE [BGI15, DHRW16]
- OT correlation, from DDH [BGI16, BCGI017]
- Vector oblivious linear evaluation, from LPN [BCGI18]
- OT correlation, from LPN [BCGIKS19]
- Bilinear correlations, from LPN [BCGIKS19]
- OLE correlations, from ring-LPN [BCGIKS20]
 - : efficient
 - : doable
 - : purely theoretical

- : linear correlation
- : non-linear correlation

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

History

- 2-party, linear correlation, from OWF (use a PRG)
- Multi-party linear correlations, from OWF [GI99, CDI05]
- All correlations, from iO [BCGIO17]
- All additive correlations, from LWE [BGI15, DHRW16]
- OT correlation, from DDH [BGI16, BCGI017]
- Vector oblivious linear evaluation, from LPN [BCGI18]
- OT correlation, from LPN [BCGIKS19]
- Bilinear correlations, from LPN [BCGIKS19]
- OLE correlations, from ring-LPN [BCGIKS20]
 - : efficient
 - : doable
 - : purely theoretical

- : linear correlation
- : non-linear correlation

prevents accessing the correlations *incrementally*

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

History

- 2-party, linear correlation, from OWF (use a PRG)
- Multi-party linear correlations, from OWF [GI99, CDI05]
- All correlations, from iO [BCGIO17]
- All additive correlations, from LWE [BGI15, DHRW16]
- OT correlation, from DDH [BGI16, BCGI017]
- Vector oblivious linear evaluation, from LPN [BCGI18]
- OT correlation, from LPN [BCGIKS19]
- Bilinear correlations, from LPN [BCGIKS19]
- OLE correlations, from ring-LPN [BCGIKS20]
 - : efficient
 - : doable
 - : purely theoretical

- : linear correlation
- : non-linear correlation

We want a pseudorandom correlation function.

Correlated pseudorandom functions

Low-Complexity Weak PRFs

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_{R}}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

Low-Complexity Weak PRFs

 \approx

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_B}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

Low-Complexity Weak PRFs

WPRF: F_K is indistinguishable from a random function when evaluated on random inputs.

 \approx

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_R}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

when evaluated on random inputs.

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_B}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

Low-Complexity Weak PRFs

WPRF: F_K is indistinguishable from a random function when evaluated on random inputs.

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_B}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

Low-Complexity Weak PRFs

WPRF: F_K is indistinguishable from a random function when evaluated on random inputs.

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_{R}}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

when evaluated on random inputs.

Correlated pseudorandom functions

Correctness & security:

- Black-box access to samples of the form $(F_{K_A}(x), F_{K_B}(x))$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_{R}}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_A}(x)$.
- Same condition in the other direction.

when evaluated on random inputs.

What we show in the paper

- then there is a pseudorandom correlation function for the OT correlation.
- correlation (authenticated Beaver triples, OLE, inner products, etc).

• If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function, • If you have Function Secret Sharing (FSS) for the class $C^{(2)} = \{f_1, f_2 : f_1, f_2 \in C\}$ where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear

What we show in the paper

- then there is a pseudorandom correlation function for the OT correlation.
- correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any $f \in C$, share $(f) \rightarrow (k_1, k_2)$ such that $\forall x, \text{Eval}(k_1, x) + \text{Eval}(k_2, x) = f(x)$, yet k_i hides f.

• If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,

• If you have Function Secret Sharing (FSS) for the class $C^{(2)} = \{f_1, f_2 : f_1, f_2 \in C\}$ where C contains a weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear

What we show in the paper

- then there is a pseudorandom correlation function for the OT correlation.
- correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any $f \in C$, share $(f) \rightarrow (k_1, k_2)$ such that $\forall x, \text{Eval}(k_1, x) + \text{Eval}(k_2, x) = f(x)$, yet k_i hides f.

High-End

Any WPRF + FSS for all circuits [BGI15, DHRW16]

- Many limitations: imperfect correctness, requires very powerful assumptions (FHE-style)
- Unlikely to lead to concretely efficient candidates

• If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function,

• If you have Function Secret Sharing (FSS) for the class $C^{(2)} = \{f_1, f_2 : f_1, f_2 \in C\}$ where C contains a weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear

What we show in the paper

- then there is a pseudorandom correlation function for the OT correlation.
- correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any $f \in C$, share $(f) \rightarrow (k_1, k_2)$ such that $\forall x, \text{Eval}(k_1, x) + \text{Eval}(k_2, x) = f(x)$, yet k_i hides f.

High-End

Any WPRF + FSS for all circuits [BGI15, DHRW16]

- Many limitations: imperfect correctness, requires very powerful assumptions (FHE-style)
- Unlikely to lead to concretely efficient candidates

• If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function, • If you have Function Secret Sharing (FSS) for the class $C^{(2)} = \{f_1, f_2 : f_1, f_2 \in C\}$ where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear

Using efficient FSS?

- FSS for sums of point functions exists from OWFs [BGI16]
- Existing constructions are very efficient
- \implies Can we have a WPRF in this low complexity class?

What we show in the paper

- then there is a pseudorandom correlation function for the OT correlation.
- correlation (authenticated Beaver triples, OLE, inner products, etc).

FSS for C: for any $f \in C$, share $(f) \rightarrow (k_1, k_2)$ such that $\forall x, \text{Eval}(k_1, x) + \text{Eval}(k_2, x) = f(x)$, yet k_i hides f.

High-End

Any WPRF + FSS for all circuits [BGI15, DHRW16]

- Many limitations: imperfect correctness, requires very powerful assumptions (FHE-style)
- Unlikely to lead to concretely efficient candidates

This talk: I will present a step-by-step construction of a PCF for OT, from which the new WPRF candidate emerges naturally. The construction does not go through FSS since for the specific case of OT, puncturable PRFs suffice.

• If you have Function Secret Sharing (FSS) for a class C that contains a weak pseudorandom function, • If you have Function Secret Sharing (FSS) for the class $C^{(2)} = \{f_1, f_2 : f_1, f_2 \in C\}$ where C contains a

weak pseudorandom function, then there is a pseudorandom correlation function for any additive bilinear

Using efficient FSS?

- FSS for sums of point functions exists from OWFs [BGI16]
- Existing constructions are very efficient
- \implies Can we have a WPRF in this low complexity class?

Superpolynomial regime

Superpolynomial regime

OWF [GGM86]

•

Superpolynomial regime

OWF [GGM86]

....

DDH [NR97]

•••••••••••

Ρ NC^{1} Factoring [Kha93] TC^0 ACC^{0} $AC^0[\oplus]$ Depth > 3 >Depth 3 Depth 2

Superpolynomial regime

OWF [GGM86]

....

DDH [NR97]

Superpolynomial regime

OWF [GGM86]

....

DDH [NR97]

Subexponential regime

Subexponential regime

Subexponential regime

OWF [GGM86]

[LMN89]

•

Subexponential regime

OWF [GGM86]

....

.

DDH [NR97] Factoring [NRR00] LWE [BPR12]

Subexponential regime

OWF [GGM86]

....

.

DDH [NR97] Factoring [NRR00] LWE [BPR12]

Subexponential regime

OWF [GGM86]

...

DDH [NR97] Factoring [NRR00] LWE [BPR12]

Subexponential regime

OWF [GGM86]

DDH [NR97] Factoring [NRR00] LWE [BPR12]

[LMN89]

 NC^1 Heuristic [BIPSW18] TC^0 ACC^{0} Heuristic [ABGKR14] ... Broken in [BR17] $AC^0[\oplus]$

Subexponential regime

OWF [GGM86]

DDH [NR97] Factoring [NRR00] LWE [BPR12]

[LMN89]

 NC^{1}

....

 TC^{0}

 ACC^{0}

 $AC^{0}[\oplus]$

Heuristic [BIPSW18]

This work: candidate WPRF for the class of XNF formulas (Xor Normal Form)

Depth 2, one layer of ANDs, followed by a single XOR

The Class of XNF Formulas

XNF formulas are (polynomial-size) depth-2 boolean circuits over literals (inputs and their negation) with one layer of (arbitrary fan-in) AND gates, followed by a single (arbitrary fan-in) XOR gate.

Example: $(\neg X_1 \land X_2 \land \neg X_3) \oplus (\neg X_4 \land X_5 \land \neg X_6) \oplus \cdots$

We get the following **conjecture:** XNF formulas are (subexponentially) hard to learn under the uniform distribution.

Concrete structure:

The Class of XNF Formulas

XNF formulas are (polynomial-size) depth-2 boolean circuits over literals (inputs and their negation) with one layer of (arbitrary fan-in) AND gates, followed by a single (arbitrary fan-in) XOR gate.

Example: $(\neg X_1 \land X_2 \land \neg X_3) \oplus (\neg X_4 \land X_5 \land \neg X_6) \oplus \cdots$

We get the following **conjecture:** XNF formulas are (subexponentially) hard to learn under the uniform distribution.

Concrete structure:

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

Oblivious transfer correlation:

$$\overrightarrow{w}_A + \overrightarrow{w}_B = \overrightarrow{u} \star \overrightarrow{v}$$

A construction from LPN

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

Oblivious transfer correlation:

$$\overrightarrow{w}_A + \overrightarrow{w}_B = \overrightarrow{u} \star \overrightarrow{v}$$

A construction from LPN

1. Reduction to subfield-VOLE

hash functions gives (pseudorandom) OT correlations.

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

Oblivious transfer correlation:

$$\overrightarrow{w}_A + \overrightarrow{w}_B = \overrightarrow{u} \star \overrightarrow{v}$$

A construction from LPN

1. Reduction to subfield-VOLE

hash functions gives (pseudorandom) OT correlations.

Intuition. the i-th (string-) OT is:

- $(s_0, s_1) = (H(-w_{B,i}), H(x w_{B,i}))$
- $(b, s_b) = (u_i, H(w_{A,i}))$

where H is a correlation-robust hash function.

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

New target

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Construction for a random *unit vector* \vec{u} from puncturable pseudorandom functions

- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Construction for a random *unit vector* \overline{u} from puncturable pseudorandom functions

- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Construction for a random *unit vector* \vec{u} from puncturable pseudorandom functions

- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Construction for a random *unit vector* \vec{u} from puncturable pseudorandom functions

- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Construction for a random *unit vector* \overline{u} from puncturable pseudorandom functions

- Write \overrightarrow{u} as a sum of *t* unit vectors $\overrightarrow{u}_1 \cdots \overrightarrow{u}_t$
- Apply the previous construction *t* times (with the same *x*)
- After expansion, the parties locally sum their shares:

$$\left(\bigoplus_{i=1}^{t} \overrightarrow{w}_{A}^{i}\right) \oplus \left(\bigoplus_{i=1}^{t} \overrightarrow{w}_{B}^{i}\right) = x \cdot \bigoplus_{i=1}^{t} \overrightarrow{u}_{i} = x \cdot \overrightarrow{u}$$

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - primal

A construction from LPN

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - primal

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - primal

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - dual

A construction from LPN

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \vec{u} using dual-LPN

3

- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Pseudorandom Correlation Functions

 $|\operatorname{seed}_A| \approx \lambda \cdot t$ $|\operatorname{seed}_B| \approx \lambda \cdot t \cdot \log n$

- λ is a security parameter, *t* is an LPN noise parameter, *n* is the vector length.
- Converted to *n* pseudorandom OTs via a correlation-robust hash function.

Intuitively, to get a PCF, we want to

- make H exponentially big, and
- compute each $H_i \cdot \langle x \cdot \overrightarrow{e} \rangle$ in time polylog(dim(H))

Idea:

Make H exponentially sparse?

Pseudorandom Correlation Functions

If *H* is exponentially large and exponentially sparse... Then $H \cdot \overrightarrow{e}$ is sparse, hence not pseudorandom

If H is dense enough such that $H \cdot \overrightarrow{e}$ is not sparse... Then H is necessarily 'small'

Pseudorandom Correlation Functions

If H is exponentially large and exponentially sparse... Then $H \cdot \overrightarrow{e}$ is sparse, hence not pseudorandom

Having our cake and eating it too?

What if we make H and \overrightarrow{e} exponentially large, with variable density?

Description:

- A row of H has d blocks, each block has t sub-blocks
- \overrightarrow{e} is distributed as a row of H.
- We allow up to 2^d rows; think: $d \approx t \approx \lambda$

If H is dense enough such that $H \cdot \overrightarrow{e}$ is not sparse... Then H is necessarily 'small'

 $\approx \$$ $\mathsf{EQ}(x_{i,j}, \bar{K}_{i,j}) = \bigoplus_{i=1}^{d} \bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j} \oplus K_{i,j} \right)$

 $\approx \$$ $EQ(x_{i,j}, \bar{K}_{i,j}) = \bigoplus_{i=1}^{d} \bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j} \oplus K_{i,j} \right)$

 $\approx \$$ $EQ(x_{i,j}, \bar{K}_{i,j}) = \bigoplus_{i=1}^{d} \bigoplus_{i=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j} \oplus K_{i,j} \right)$

 $\approx \$$ $EQ(x_{i,j}, \bar{K}_{i,j}) = \bigoplus_{i=1}^{d} \bigoplus_{i=1}^{i} \bigwedge_{i=1}^{i} (x_{i,j} \oplus K_{i,j})$

 $\checkmark \approx \$$ $EQ(x_{i,j}, \bar{K}_{i,j}) = \bigoplus_{i=1}^{d} \bigoplus_{i=1}^{i} \bigwedge_{i=1}^{i} (x_{i,j} \oplus K_{i,j})$

 \approx \$

 \approx \$

 \approx \$

Candidate low-complexity WPRF:

- $n = |x| = |K| = t \cdot d \cdot (d 1)/2$
- Security up to $2^d = 2^{n^{1/3}}$ samples against $2^{n^{1/3}}$ -time adversaries?

$$\bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j,\ell} \oplus K_{i,j,\ell} \right)$$

A tremendous number of attacks on LPN have been published...

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03]
 Stern's variant [ICIT:Stern88]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

• Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN have been published...

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03] Stern's variant [ICIT:Stern88]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN have been published...

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03] Stern's variant [ICIT:Stern88]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

Claim: w.h.p. over the choice of H_i , the distribution $\vec{v} \cdot (H_i \cdot \vec{e}_i)$ has bias $2^{-O(t)}$ for all \vec{v} of Hamming weight in $[2^{i-1}, 2^i]$.

$$\mathsf{weight}(\overrightarrow{v}) = w$$

Using an Azuma-style concentration bound
(McDiarmid's bounded difference inequality):

$$\Pr\left[\#\left\{\text{bad sets} > \frac{w}{2}\right\}\right] \leq \exp\left(-\Omega\left(t \cdot 2^{i}\right)\right)$$

$$\text{Bias of } \overrightarrow{v} \cdot (H \cdot \overrightarrow{e}) = \overrightarrow{v} \cdot \left(\bigoplus_{i} H_{i} \cdot \overrightarrow{e}_{i}\right) \leq \text{bias of } \overrightarrow{v} \cdot (H_{i} \cdot \overrightarrow{e}_{i})$$

Using an Azuma-style concentration bound
(McDiarmid's bounded difference inequality):

$$\Pr\left[\#\left\{\text{bad sets} > \frac{w}{2}\right\}\right] \le \exp\left(-\Omega\left(t \cdot 2^{i}\right)\right)$$

$$\text{Bias of } \overrightarrow{v} \cdot (H \cdot \overrightarrow{e}) = \overrightarrow{v} \cdot \left(\bigoplus_{i} H_{i} \cdot \overrightarrow{e}_{i}\right) \le \text{bias of } \overrightarrow{v} \cdot (H_{i} \cdot \overrightarrow{e}_{i})$$

Claim: w.h.p. over the choice of H_i , the distribution $\vec{v} \cdot (H_i \cdot \vec{e}_i)$ has bias $2^{-O(t)}$ for all \vec{v} of Hamming weight in $[2^{i-1}, 2^i]$.

Conclusion: with probability at least $1 - 2^{-\Omega(t)}$ over the choice of *H*, the bias of the distribution with respect to any test vector \vec{v} is at most $2^{-\Omega(t)}$.

Security of Variable-Density LPN - Algebraic Attacks

Recall the alternative formulation of the candidate: $F_K(x) = \bigoplus_{i=1}^d \bigoplus_{j=1}^i \bigwedge_{\ell=1}^i \left(x_{i,j,\ell} \oplus K_{i,j,\ell} \right) = F(x \oplus K)$, where $F(x) = \bigoplus_{i=1}^d \bigoplus_{j=1}^i \bigwedge_{\ell=1}^i x_{i,j,\ell}$. i=1 j=1 $\ell=1$

Security of Variable-Density LPN - Algebraic Attacks

Recall the alternative formulation of the candidate: $F_K(x) = \bigoplus$

Resistance against algebraic attacks:

Algebraic attacks: find low-degree polynomials (p,q) such that for any $x, F_K(x) \cdot q(x) = p(x)$. Then the WPRF candidate can be broken using ~ $|x|^m$ samples, where $m \ge \deg(p), \deg(q)$.

i=1

Note: the only previous candidate WPRF in AC⁰[\oplus] of [ABGKR15] was broken (in quasi-polynomial time) in [BR17], using an algebraic attack.

Claim: for any K, the rational degree $m = \min\{\deg(r) \mid F_K \cdot r = 0 \lor (F_k \oplus 1) \cdot r = 0\}$ of F_K is at least d. *r*≠0

 $T_d(x) = x_1 \oplus x_2 x_3 \oplus \cdots \oplus \bigwedge x_k$, where d' = d(d-1)/2. The *d*-th triangular function has rational degree *d*, and a direct k=d'-dsum of functions has rational degree lower bounded by the largest rational degree.

$$\bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j,\ell} \oplus K_{i,j,\ell} \right) = F(x \oplus K), \text{ where } F(x) = \bigoplus_{i=1}^{d} \bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{t} K_{i,j,\ell}$$

Follows from known results [MJSC16]: F is a direct sum of triangular functions, where the d-th triangular function is given by

Security of Variable-Density LPN - and Many More!

Recall the alternative formulation of the candidate: $F_K(x) = \bigoplus_{i=1}^d \bigoplus_{j=1}^t \bigwedge_{\ell=1}^i \left(x_{i,j,\ell} \oplus K_{i,j,\ell} \right) = F(x \oplus K)$, where $F(x) = \bigoplus_{i=1}^d \bigoplus_{j=1}^t \bigwedge_{\ell=1}^i x_{i,j,\ell}$.

Security of Variable-Density LPN - and Many More!

i=1

Recall the alternative formulation of the candidate: $F_K(x) = \bigoplus$

See the paper:

- AC⁰ attackers
- Low-degree polynomial tests (generalization of the linear test framework)
- Linear cryptanalysis (as formalized by Miles and Viola [MV11])

All cannot break the new candidate.

$$\bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j,\ell} \oplus K_{i,j,\ell} \right) = F(x \oplus K), \text{ where } F(x) = \bigoplus_{i=1}^{d} \bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{t} K_{i,j,\ell}$$

- Statistical query algorithms (generalization of the Linial, Mansour, and Nisan algorithm)

Security of Variable-Density LPN - and Many More!

i=1

Recall the alternative formulation of the candidate: $F_K(x) = \bigoplus$

See the paper:

- AC⁰ attackers
- Low-degree polynomial tests (generalization of the linear test framework)
- Linear cryptanalysis (as formalized by Miles and Viola [MV11])

All cannot break the new candidate.

Can you break it?

Challenge: breaking the candidate using less than $2^{O(n^{1/3})}$ time and samples, with $d = t = O(n^{1/3})$. Note: the variant where $x_{i,j,\ell}$ is replaced by $x_{j,\ell}$ also resists the same attacks! (And the conjectured security bound becomes $2^{O(\sqrt{n})}$ (which is tight!)). I can also provide concrete challenge parameters! E.g. $t = 150, d = 40, 2^d$ samples.

$$\bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{i} \left(x_{i,j,\ell} \oplus K_{i,j,\ell} \right) = F(x \oplus K), \text{ where } F(x) = \bigoplus_{i=1}^{d} \bigoplus_{j=1}^{t} \bigwedge_{\ell=1}^{t} K$$

- Statistical query algorithms (generalization of the Linial, Mansour, and Nisan algorithm)

Of PCFs

Sample Applications

Of the new WPRF

Sample Applications

Of PCFs

- Secure computation with one-time, indefinitely reusable, short setup, for correlations such as OT, vector OLE over larger fields, (authenticated) Beaver triples, etc.
- Black-box 2-round secure 2-party computation, with fullyreusable preprocessing
- Preprocessing NIZKs with fully reusable preprocessing
- Homomorphic secret sharing for constant-degree polynomials
- Programmable PCFs (gives applications to N-party secure computation for N > 2)

Of the new WPRF

Sample Applications

Of PCFs

- Secure computation with one-time, indefinitely reusable, short setup, for correlations such as OT, vector OLE over larger fields, (authenticated) Beaver triples, etc.
- Black-box 2-round secure 2-party computation, with fullyreusable preprocessing
- Preprocessing NIZKs with fully reusable preprocessing
- Homomorphic secret sharing for constant-degree polynomials
- Programmable PCFs (gives applications to N-party secure computation for N > 2)

Of the new WPRF

Assuming VD-LPN,

- XNF are subexponentially hard to learn under the uniform distribution
- Sparse polynomials are subexponentially hard to learn under *some* (artificial) distribution
 - \implies upcoming improvements!

Sample Applications

Of PCFs

- Secure computation with one-time, indefinitely reusable, short setup, for correlations such as OT, vector OLE over larger fields, (authenticated) Beaver triples, etc.
- Black-box 2-round secure 2-party computation, with fullyreusable preprocessing
- Preprocessing NIZKs with fully reusable preprocessing
- Homomorphic secret sharing for constant-degree polynomials
- Programmable PCFs (gives applications to N-party) secure computation for N > 2)

Of the new WPRF

Assuming VD-LPN,

- XNF are subexponentially hard to learn under the uniform distribution
- Sparse polynomials are subexponentially hard to learn under *some* (artificial) distribution
 - \implies upcoming improvements!

But also...

- Correlation-robust hash functions
- XOR-RKA secure PRGs and WPRFs (first candidate without multilinear maps)

Simply because getting access to random samples of the form $(x, F_K(x))$ and $(x, F_{K \oplus \Delta}(x))$ for an offset Δ does not help: $F_{K\oplus\Delta}(x) = F_K(x\oplus \check{\Delta})$, and $x\oplus \Delta$ is randomly distributed.

Thank You for Your Attention!

Questions?

