Efficient Designated-Verifier Non-Interactive Zero-Knowledge Proofs of Knowledge

Pyrros Chaidos, Geoffroy Couteau

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Zero-Knowledge Proof

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Non-Interactive Zero-Knowledge Proof

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Non-Interactive Zero-Knowledge Proof of Knowledge

- Complete: if P knows a solution, V accepts
- Sound: P must know a solution to convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZKPoK

- Complete: if P knows a solution, V accepts
- Sound: P must know a solution to convince V
- Zero-Knowledge: V does not learn the solution

The NIZK Landscape

The NIZK Landscape

Σ -protocol

 Σ -protocol

Non-standard assumption
Not a proof of knowledge
Soundness is bounded

Non-standard assumption
 Not a proof of knowledge
 Soundness is bounded

This work

Statistical soundness
 Proof of knowledge
 Unbounded soundness

Our Technique

Our Technique

Idea: embed e as a random coin

Our Technique

use *P* as extraction trapdoor

Why Extraction Works?

- Ext decrypts $\vec{z_0}$ and $\vec{z_1}$
- Knowing *P* does not allow P to cheat:
 - Let (M,R) be the plaintext/random coin orders
 - Pick a scheme with gcd(M,R) = 1
 - 0; e leaks only e mod R (statistically)
 - Ext can extract e mod M from an incorrect proof

What's in the Paper?

- We build a general, Groth-Sahai-like framework of unbounded DVNIZK proofs of knowledge, for statements over an abelian group.
- A dual variant of our framework handles statements over additively homomorphic cryptosystems.
- A third variant gives up on properties (unbounded, PoK) for efficiency, beating even Fiat-Shamir.

Thank you for your attention

Questions?