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Our Contribution
We obtain two new constructions:

 

1) A DVNIZK for NP under the CDH assumption  
 
First direct indication that DVNIZK with unbounded soundness are 
actually easier to build than standard NIZK 

2) A (DV)NIZK for NP assuming LWE and the existence of a 
(DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of 
[RSS19] which required a NIZK for BDD.
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The Hidden-Bit Model

[FLS90]: NIZKs for NP exist unconditionally in the HBM
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Instantiating The Hidden-Bit Model
Cryptographic primitive

1.Produce a string which is indistinguishable from random
2.Be able to provably ‘open’ positions of this pseudorandom string
3.The openings should not reveal the non-opened positions

Prover’s task, given the CRS:

 14/19



Verifiable Pseudorandom Generators

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ,    ), i, = yes / noπ
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, , S ,{πi}i∈S

Hidden-bit model NIZK

S

VPRG

XORed with the CRS, then
used as the hidden bit string

𝖢𝖱𝖲 C

Proof Idea:
•      is ‘close to a bad string’ if          , Ext(     )          is bad
• Proof accepted iff inconsistent opening OR the CRS is « 

close to a bad string » (requires (2))
• Inconsistent opening        contradiction to VPRG (3’) 
• Since      is short, few CRS are close to a bad string. 

∃ ⊕ CC
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NIZK	with	|𝜋| independent	of	circuit	𝐶 computing	the	
NP	relation	is	only	known	from	strong	assumptions:	

(*)iO,	FHE,	knowledge	assumptions,	compact	HomSig.

Without	(*):

Multiplicative overhead	in	|𝐂|…

Motivation

This	Work
(DP,	PP)-NIZKs	based	on	falsifiable	

pairing/paring-free	group	assumptions
with	proof	size 𝐂 +poly(𝝀).	

• Shortest	know is	CRS-NIZK	of	[Gro10@AC]	based	on	
Naccache-Stern	PKE	has	proof	size	polylog(𝜆) C .	
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Recap:	(DP,	PP)-NIZKs

Prover Verifier(x,	w)

𝜋
x

PreProcessing NIZKs

Proving	Key	k3 Verifying	Key	k4

n Result	of	[KimWu18@Crypto]
Any	context-hiding	homomorphic	signatures/MACs	
(HomSig/MAC)	can	be	converted	into	DP/PP-NIZKs.
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HomSig/MAC	in	a	Nutshell
(Public)
Evaluator

Signs	on	many	messages
𝐰 = (w8,… ,w:)

Signer

{(w<, σ<)}<∈[:]	

For	soundness.{(w<, σ<)}<∈[:]	

Cirucit C

If	 𝜎E =poly(𝜆)	for	∀C ∈ 𝐍𝐂𝟏,	
then	 𝜋 = C +poly(𝜆) by	
[KimWu18].	



Result	1:	New	HomSig (=>DP-NIZK)

Compact HomSig for	𝐍𝐂𝟏 based	on	a	non-
static	Diffie-Hellman	type assumption.

Core	Idea:	
n View	the	simulator used	in	certain	Key-Policy	ABE	

security	proofs	as HomSigs.

n Construct	Key-Policy	ABE	with	constant-sized	secret-
keys from	non-static	DH	type	assumptions	building	on	
[RW13,	AC16,	AC17].
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AdversaryABE	Simulator	S x∗
Target	

attribute

(=	Adversary	for	some	
hard	problem	)

Generate	sim.	trapdoor	
𝐭𝐝𝐱∗ along	with	pp.

pp

C s.t. C x∗ = 0
Secret	key	queryUse	tdQ∗ to	simulate	

secret	key	𝐬𝐤𝐂 skC

View	tdQ∗ as	a	
“signature”	for	msg	x∗.

View	this	process	as	
“evaluating”		tdQ∗ on	

circuit	C.	Then,	skC is	the	
“evaluated	signature”	for	

message	C(x∗)=0.
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Compact	HomMAC for arithmetic	circuits	of	
poly.	bounded	degree		based	on	DDH.

Core	Idea:	
n Transform	the	non-context-hiding HomMAC by	

[CatFio18@JoC]	into	a	context-hiding	HomMAC using	
(extractable)	FE	for	inner	prodoucts (IPFE).

n Instantiate	with	DDH-based	(extractable)	IPFE by	
[AgrLibSte16@Crypto]

Result	2:	New	HomMAC (=>PP-NIZK)

*	Since	we	need	the	“extractable”	feature,	the	LWE-based	IPFE	of	[AgrLibSte16]	
cannot	be	used.

*Includes	𝐍𝐂𝟏!!
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Compute	𝑓(𝒓) and	check	if	𝑓 𝒓 = 𝑧 + ∑ 𝑐f𝑠fc
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sk =	(𝑠, 𝒓) ← ℤX\]8n KeyGen():

𝜎V such	that	𝑟V = 𝑤V + 𝜎V𝑠
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Not	context-hiding	since	𝜎a = 𝑐8, … , 𝑐c may	
leak	information	of	the	original	msg.	𝒘!
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Verification	does	not need	to	know	𝜎a = 𝑐8, … , 𝑐c ,	but	
only	the	value	of	∑ 𝑐f𝑠fc

fg8 !!

Use	FE	for	inner	products!
①Modify	SigEval to	output	an	encryption:

ct ← IPFE. Enc(mpk, (𝑐8, … , 𝑐c))
②Include	skq3 ← IPFE. KeyGen(msk, (𝑠, … , 𝑠c))

in	secret	key	and	change	VerifyEvaled to	check:
𝑓 𝒓 = 𝑧 + IPFE. Dec(skq3, ct)

?

Compute	𝑓(𝒓) and	check	if	𝑓 𝒓 = 𝑧 + ∑ 𝑐f𝑠fc
fg8



Questions??


