Designated-Verifier Pseudorandom Generators, and their Applications
 Geoffroy Couteau, Dennis Hofheinz

Reusable Designated-Verifier NIZKs for all NP from CDH
 Willy Quach, Ron D. Rothblum, and Daniel Wichs

Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa

Zero-Knowledge Proof

prover P
verifier V

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Non-Interactive ZeroKnowledge Proof

verifier V

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZK

verifier V

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZK

verifier $\vee \boldsymbol{\rho}$

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZK

prover P

- Complete: if P knows a solution, V accepts
- Unbounded Soundness: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Brief History of (DV)NIZKs

NIZK from TDP
[FLS90], first NIZK from a generic
assumption, introduces the hidden-bit model

NIZK from new assumptions
[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating
correlation intractable hash functions (iO, exponentially-strong KDM security,
circular FHE)
[RR19]: NIZK from LWE + NIZK for BDD
[PS19]: NIZK from LWE (!)
[CHK03], inefficient construction efficient pairing-based NIZKs.

路 NIZK in the plain model + seminal paper on NIZKs with CRS, NIZK

NIZK from VPRG
[DN00], first NIZK from a necessary and sufficient assumption

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are actually easier to build than standard NIZK
2) A (DV)NIZK for NP assuming LWE and the existence of a (DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of [RSS19] which required a NIZK for BDD.

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are actually easier to build than standard NIZK
2) A (DV)NIZK for NP assuming LWE and the existence of a (DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of [RSS19] which required a NIZK for BDD.

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Verifiable Pseudorandom Generator:

- Relaxed soundness
- Generalization to the DV setting

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

[FLS90]: NIZKs for NP exist unconditionally in the HBM

Instantiating The Hidden-Bit Model

Cryptographic primitive

Prover's task, given the CRS:

1. Produce a string which is indistinguishable from random
2. Be able to provably 'open' positions of this pseudorandom string 3. The openings should not reveal the non-opened positions

Verifiable Pseudorandom Generators

$\operatorname{VPRG}(\boldsymbol{*})=$ S S S S S S S
$\operatorname{Prove}(\boldsymbol{C})=\pi\{$ The ith bit of $\operatorname{VPRG}(\boldsymbol{\sigma})$ using the seed in is $\boldsymbol{\sim}\}$
$\operatorname{Verify}\left(B, \mathrm{i}, \pi, \cos ^{2}\right)=$ yes $/ \mathrm{no}$

Verifiable Pseudorandom Generators

$$
\begin{aligned}
& \operatorname{VPRG}(\boldsymbol{S})=\mathbb{S} \mathcal{S}_{\mathbb{N}} \Theta_{\mathbb{N}}, \infty \\
& \operatorname{Prove}(\boldsymbol{\sigma}, \mathrm{i})=\pi\{\text { The ith bit of } \operatorname{VPrg}(\text { using the seed in } ⿴ 囗 ⿱ 一 一 \infty \\
& \operatorname{Verify}(\Omega, i, \pi, \infty)=\text { yes } / \text { no }
\end{aligned}
$$

－Is short
－The proof leaks nothing more about δ
－The proof is sound in a strong sense

Verifiable Pseudorandom Generators

$$
\begin{aligned}
& \operatorname{VPRG}(\boldsymbol{S})=\mathbb{S} \mathcal{S}_{\mathbb{N}} \Theta_{\mathbb{N}}, \infty
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Verify}(\Omega, i, \pi, \infty)=\text { yes } / \text { no }
\end{aligned}
$$

- Is short
- The proof leaks nothing more about $\boldsymbol{\delta}$
- The proof is sound in a strong sense

Verifiable Pseudorandom Generators

$$
\begin{aligned}
& \operatorname{Verify}(\Omega, i, \pi, \text {) }=\text { yes } / \text { no }
\end{aligned}
$$

- \& Is short
- The proof leaks nothing more about $\boldsymbol{\delta}$
- The proof is sound in a strong sense

1. Every B is in the image of VPRG(.)
2. For every possible \triangle, there is a unique associated
3. Proofs of opening to bits inconsistent with

Relaxing VPRGs

1. Every Δ is in the image of VPRG(.)
2. For every possible B, there is a unique associated
3. Proofs of opening to bits inconsistent with

Relaxing VPRGs

1. Every $\square_{\text {S }}$ is in the image of $V P R G($.

2. Proofs of opening to bits inconsistent with 웅

Relaxing VPRGs

1. Every ${ }^{\text {S }}$ is in the image of VPAG(.)

Relaxing VPRGs

1. Every : $_{\text {- }}$ is in the image of VPRG(.)
2. For every possible , there is a unique associated

3. Δ is short

Relaxing VPRGs

1. Every $\begin{aligned} & \text { s in the image of } V P n G(.)\end{aligned}$

2. For every possible B, there is a unique associated

3'. Proofs of opening to bits inconsistent with are hard to find 4. Δ is short

Hidden-bit model NIZK

Relaxing VPRGs

1. Every ${ }^{5}$ is in the image of $V P R G($.

3'. Proofs of opening to bits inconsistent with 우농 4. Δ is short

Main Instantiation: DVPRG from CDH

CDH over a group \mathbb{G} states that given random g, g^{a}, g^{b}, it is hard to find $g^{a b}$

Main Instantiation: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

```
[CKS08], gap twin-CDH: given random \(g, g^{a}, g^{b}, g^{c}\), it is hard to find \(g^{a b}, g^{a c}\) even given an oracle for the twin-DDH problem
CDH \(\Leftrightarrow\) gap twin-CDH using some secret 'twin-DDH checking key'
```


Main Instantiation: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

> [CKS08], gap twin-CDH: given random g, g^{a}, g^{b}, g^{c}, it is hard to find $g^{a b}, g^{a c}$ even given an oracle for the twin-DDH problem
> CDH \Leftrightarrow gap twin-CDH using some secret 'twin-DDH checking key'
[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a}, g^{b}, g^{c}$, it is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-DDH problem

Equivalent to CDH

Main Instantiation: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

```
[CKS08], gap twin-CDH: given random g, g},\mp@code{g},\mp@subsup{g}{}{b},\mp@subsup{g}{}{c}\mathrm{ , it is hard to find 恀吕, gac
even given an oracle for the twin-DDH problem
    CDH }\Leftrightarrow\mathrm{ gap twin-CDH using some secret 'twin-DDH checking key'
```

[GL89]: explicit predicate $\mathrm{B}($.$\left.) such that given random g, g^{a}\right) g^{b}, g^{c}$, it is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-LDA problem

Equivalent to CDH

$$
\because=\infty
$$

Main Instantiation: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

> [CKS08], gap twin-CDH: given random g, g^{a}, g^{b}, g^{c}, it is hard to find $g^{a b}, g^{a c}$ even given an oracle for the twin-DDH problem
> CDH \Leftrightarrow gap twin-CDH using some secret 'twin-DDH checking key'
[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a} g^{b}, g^{c}$, t is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-EDA prodem

Equivalent to CDH

$\because=\square$
 = public parameters

Main Instantiation: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

```
[CKS08], gap twin-CDH: given random g, g
even given an oracle for the twin-DDH problem
    CDH }\Leftrightarrow\mathrm{ gap twin-CDH using some secret 'twin-DDH checking key'
```

[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a} g^{b}, g^{c}$, t is hard to find $B\left(g^{a b}, g^{a}\right.$ with probability >> $1 / 2$ even given an oracle for the twin-LDA proiom

Equivalent to CDH

$\Omega=\theta$
 = public parameters

$\square=$ pseudorandom bit associated to 0 with respect to 0

Main Instantiation: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

```
[CKS08], gap twin-CDH: given random g, g
even given an oracle for the twin-DDH problem
    CDH }\Leftrightarrow\mathrm{ gap twin-CDH using some secret 'twin-DDH checking key'
```

[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a} g^{b}, g^{c}$, t is hard to find $B\left(g^{a b}, g^{a}\right.$ with probability >> $1 / 2$ even given an oracle for the twin-LDA proidem

Equivalent to CDH

$\square=O$ $=$ public parameters

> Proof: $g^{a b}, g^{a c}$ + twin-DDH check

20/19

Part II: Malicious
 Designated-Verifier NIZKs

Reusable Designated-Verifier NIZKs for all NP from CDH

Willy Quach
Northeastern

Ron D. Rothblum

Technion

Daniel Wichs
Northeastern

Designated-Verifier NIZK

Designated-Verifier NIZK

Designated-Verifier NIZK

x, w
π
Verifier x

Designated-Verifier NIZK

- Need complex setup that interacts with Verifiers

Designated-Verifier NIZK

- Need complex setup that interacts with Verifiers
- Simpler setup?

Designated-Verifier NIZK

- Need complex setup that interacts with Verifiers
- Simpler setup?
- Setup of a NIZK?

Malicious Designated-Verifier NIZK (MDV-NIZK)

 crs
Prover

Verifier

x, w

x

- Simple Trusted Setup: only puts a CRS in the sky

Malicious Designated-Verifier NIZK (MDV-NIZK)

```
crs
```


Prover

x, w
x

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks a secret key himself

Malicious Designated-Verifier NIZK (MDV-NIZK)

Prover

x, w

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks ($p k, k_{V}$) himself

Malicious Designated-Verifier NIZK (MDV-NIZK)

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks ($p k, k_{V}$) himself
- (Any) Prover uses (crs, $p k$) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks ($p k, k_{V}$) himself
- (Any) Prover uses (crs, $p k$) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks ($p k, k_{V}$) himself
- (Any) Prover uses (crs, $p k$) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks ($p k, k_{V}$) himself
- (Any) Prover uses (crs, pk) to generate proofs
-Zero-Knowledge?

Malicious Designated-Verifier NIZK (MDV-NIZK)

x, w

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks $p k$ himself
- (Any) Prover uses (crs, pk) to generate proofs
-Zero-Knowledge?

Malicious Designated-Verifier NIZK (MDV-NIZK)

x, w

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks pk himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

Malicious Designated-Verifier NIZK (MDV-NIZK)

x, w

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks $p k$ himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

Security: NIZK-like (only CRS is trusted)

Malicious Designated-Verifier NIZK (MDV-NIZK)

x, w

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks ($p k, k_{V}$) himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

Security: NIZK-like (only CRS is trusted)

Malicious Designated-Verifier NIZK (MDV-NIZK)

Prover

x, w
π

- Simple Trusted Setup: only puts a CRS in the sky

Syntax: DV-NIZK-like

- (Any) Verifier picks ($p k, k_{V}$) himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

Security: NIZK-like (only CRS is trusted)

Malicious Designated-Verifier NIZK (MDV-NIZK)

Prover

x, w

- Simple Trusted Setup: only puts a CRS in the sky 2-round Zero-Knowledge with reusable first message
- Zero-Knowledge against malicious verifiers

Syntax: DV-NIZK-like

Security: NIZK-like (only CRS is trusted)

Roadmap

Hidden Bits NIZK
$+$

Roadmap

Hidden Bits NIZK
$+$
VPRG

DV-NIZK

MDVPRG
MDV-NIZK

Roadmap

DVPRG
Prover

- , 图,

DVPRG
Prover

Malicious DVPRG

Malicious DVPRG

- Non-opened bits hidden against malicious public keys

Malicious DVPRG

- Non-opened bits hidden against malicious public keys

Malicious DVPRG \Rightarrow Malicious DV-NIZK

MDV-PRG from DDH?

MDV-PRG from DDH?

MDV-PRG from DDH?

© $\frac{c r s}{h_{1}}$
$g^{s}+:$
h_{k}
$\left\{\begin{array}{l}---\bar{b}_{i} \\ \text { a.k.a }\end{array}\right\}$

MDV-PRG from DDH?

$g^{s}+$

$$
h_{k} \longrightarrow s_{k}=h_{k}^{S}
$$

MDV-PRG from DDH?

$$
\left\{\begin{array}{l}
---\bar{c}^{-} \\
\text {a.k.a } g^{c_{i}}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { © } \underset{h_{1}}{\substack{c r s}} \underset{s_{1}=h_{1}^{s}}{\substack{\text { chen }}} \\
& g^{s}+ \\
& h_{k} \longrightarrow s_{k}=h_{k}^{S} \\
& \left\{\begin{array}{l}
-\overline{-k} \bar{b}_{i} \\
\text { a. } \\
\text { - }
\end{array}\right.
\end{aligned}
$$

π

$$
f_{1} \longrightarrow \pi_{1}=f_{1}^{s}
$$

$$
f_{k} \longrightarrow \pi_{k}=f_{k}^{s}
$$

$$
\left\{\begin{array}{l}
---\bar{c}_{i} \\
\text { a.k.a })^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { MDV-PRG from DDH? } \\
& h_{1} \longrightarrow s_{1}=h_{1}^{S} \\
& g^{s}+ \\
& h_{k} \longrightarrow s_{k}=h_{k}^{S} \\
& \left\{\begin{array}{l}
---\bar{b}_{i} \\
\text { a.k.a } \\
\text { - }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { MDV-PRG from DDH? } \\
& h_{1} \longrightarrow s_{1}=h_{1}^{s} \\
& g^{s}+ \\
& h_{k} \longrightarrow s_{k}=h_{k}^{s}
\end{aligned}
$$

MDV-PRG from DDH?

$g^{s}+$

$$
h_{k} \longrightarrow s_{k}=h_{k}^{S}
$$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$
MDV-PRG from DDH?

$g^{s}+$

$$
h_{k} \longrightarrow s_{k}=h_{k}^{S}
$$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

MDV-PRG from DDH?

$$
h_{k} \longrightarrow s_{k}=h_{k}^{S}
$$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$
- Malicious Verifier can learn other bits!

MDV-PRG from DDH?

$$
h_{k} \longrightarrow s_{k}=h_{k}^{S}
$$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$
- Add random dependencies?
Adding dependencies

$g^{s}+$

$$
\begin{aligned}
& h_{i} \\
& h_{j}
\end{aligned}
$$

h_{ℓ}
\square π

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

Adding dependencies

Twin DDH Check a.k.a

Cramer Shoup proof
f_{1}

$$
f_{\ell}
$$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

Twin DDH Check a.k.a

Cramer Shoup proof

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

- Malicious Hiding: even against adversarial $p k$, proof $\boldsymbol{\pi}_{i}$ hides \boldsymbol{s}_{j} for $i \neq j$

Adding dependencies

Adding dependencies

- needs all the elements $h_{i}^{s}, \ldots h_{j}^{s}$ to recover s_{1}

Adding dependencies

$g^{s}+$

$$
\pi
$$

- needs all the elements $h_{i}^{S}, \ldots h_{j}^{s}$ to recover s_{1}

Adding dependencies

- needs all the elements $h_{i}^{S}, \ldots h_{j}^{s}$ to recover s_{1}

Adding dependencies

$g^{s}+$

h_{1}

random

Some random h_{i}^{S} unique to s_{1}

- needs all the elements $h_{i}^{S}, \ldots h_{j}^{S}$ to recover s_{1}

Theorem: MDV-PRG under One-More CDH

Theorem: MDV-PRG under One-More CDH

Corollary: MDV-NIZK from One-More CDH

Part3:
 Designated Verifier/Prover Preprocessing NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata (AIST), Ryo Nishimaki (NTT), Shota Yamada (AIST), Takashi Yamakawa (NTT).

Our Result

1. DV-NIZK from the CDH assumption (with "long" proof size).
2. DP-NIZK from non-static DH-type assumption over pairing groups with "short" proof size.
3. PP-NIZK from the DDH assumption with "short" proof size.

Our Result

1. DV- NIZK from the CDH assumption (with "long" proof size).

DONE

2. DP-NIZK from non-static DH-type assumption over pairing groups with "short" proof size.
3. PP-NIZK from the DDH assumption with "short" proof size.

Motivation

NIZK with $|\pi|$ independent of circuit C computing the NP relation is only known from strong assumptions:
(*)iO, FHE, knowledge assumptions, compact HomSig.

Motivation

NIZK with $|\pi|$ independent of circuit C computing the NP relation is only known from strong assumptions:
(*)iO, FHE, knowledge assumptions, compact HomSig.

Without (*):

- DV-NIZK from CDH has proof size poly $(\lambda,|C|)$.
- Famous GOS CRS-NIZK has proof size $0(\lambda|C|)$.
- Shortest know is CRS-NIZK of [Gro10@AC] based on Naccache-Stern PKE has proof size polylog $(\lambda)|C|$.

Motivation

NIZK with $|\pi|$ independent of circuit C computing the NP relation is only known from strong assumptions:
(*)iO, FHE, knowledge assumptions, compact HomSig.

Without (*):

- DV-NIZK from CDH has proof size poly $(\lambda,|C|)$.
- Famous GOS CRS-NIZK has proof size $0(\lambda|C|)$.
- Shortest know is CRS-NIZK of [Gro10@AC] based on Naccache-Stern PKE has proof size polylog $(\lambda)|C|$.

Multiplicative overhead in |C|...

Motivation

NIZK with NP relatio (*) io, Fr

This Work

Without

(DP, PP)-NIZKs based on falsifiable pairing/paring-free group assumptions with proof size $|\mathrm{C}|+\operatorname{poly}(\lambda)$.

- Famous GOS CRS-NIZK has proof size $O(\lambda|C|)$.
- Shortest know is CRS-NIZK of [Gro10@AC] based on Naccache-Stern PKE has proof size polylog $(\lambda)|C|$.

Multiplicative overhead in |C|...

Recap: (DP, PP)-NIZKs

Designated-Prover NIZKs

Prover (x, w)

Verifier x

Proving Key k_{P}
*Opposite to DV-NIZKs

Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

$\operatorname{Prover}(\mathrm{x}, \mathrm{w})$
Verifier x

Proving Key k_{P}

Verifying Key k_{V}
*Relaxation of DP and DV-NIZKs

Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

$\operatorname{Prover}(x, w)$
Verifier x

Proving Key k_{P}

Verifying Key k_{V}
■ Result of [KimWu18@Crypto]
Any context-hiding homomorphic signatures/MACs (HomSig/MAC) can be converted into DP/PP-NIZKs.

HomSig/MAC in a Nutshell

Signer

Signs on many messages

$$
\begin{aligned}
& \mathbf{w}=\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right) \\
& \Rightarrow\left\{\left(\mathrm{w}_{\mathrm{i}}, \sigma_{\mathrm{i}}\right)\right\}_{\mathrm{i} \in[\mathrm{k}]}
\end{aligned}
$$

(Public)
Evaluator
"Evaluated" Signature on message C(w)
$\left(C(\mathbf{w}), \sigma_{C}\right)$

HomSig/MAC in a Nutshell

Signer

Signs on many messages

$$
\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)
$$

$\left\{\left(\mathrm{w}_{\mathrm{i}}, \sigma_{\mathrm{i}}\right)\right\}_{\mathrm{i} \in[\mathrm{k}]}$

$>$ Unforgeability
> Context-Hiding: Evaluated signature $\left(\mathrm{C}(\mathbf{w}), \sigma_{\mathrm{C}}\right)$ leaks no information of the original message \mathbf{w}.
\searrow For zero-knowledge.

HomSig/MAC in a Nutshell

Signer

Signs on many message

$$
\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)
$$

$\left\{\left(\mathrm{w}_{\mathrm{i}}, \sigma_{\mathrm{i}}\right)\right\}_{\mathrm{i} \in[\mathrm{k}]}$
$>$ Unforgeability
> Context-Hiding: Evaluated signature $\left(\mathrm{C}(\mathbf{w}), \sigma_{\mathrm{C}}\right)$ leaks no information of the original message \mathbf{w}.
$>$ For zero-knowledge.

Result 1: New HomSig (=>DP-NIZK)

Compact HomSig for NC ${ }^{\mathbf{1}}$ based on a nonstatic Diffie-Hellman type assumption.

Core Idea:

■ View the simulator used in certain Key-Policy ABE security proofs as HomSigs.

■ Construct Key-Policy ABE with constant-sized secretkeys from non-static DH type assumptions building on [RW13, AC16, AC17].

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S
(= Adversary for some hard problem

Adversary

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

Adversary

Target
 attribute

Generate sim. trapdoor $\operatorname{td}_{\mathbf{x}^{*}}$ along with pp.
pp

High Level Overview of Result 1

Proof of selective security of an ABE scheme...
ABE Simulator S
(= Adversary for some
hard problem

Generate sim. trapdoor $\operatorname{td}_{\mathbf{x}^{*}}$ along with pp.

Use $\operatorname{td}_{x^{*}}$ to simulate secret key $\mathbf{s k}_{\mathbf{C}}$

$$
\begin{aligned}
& \text { C s.t. } \mathrm{C}\left(\mathrm{x}^{*}\right)=0 \\
& \text { Secret key query }
\end{aligned}
$$

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

- $A B E$ Simulator S
(= Adversary for some hard problem
 "signature" for msg x*.
Generate sim. trapdoor $\mathrm{td}_{\mathbf{x}^{*}}$ along with pp.

$$
\text { C s.t. } C\left(x^{*}\right)=0
$$

Use $\operatorname{td}_{\mathrm{x}^{*}}$ to simulate secret key $\mathbf{s k}_{\mathrm{C}}$

Secret key query

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

Generate sim. trapdoor $\operatorname{td}_{\mathbf{x}^{*}}$ along with pp.

C s.t. C(x
Use $\mathrm{td}_{\mathrm{x}^{*}}$ to simulate secret key $\mathbf{s k}_{\mathrm{C}}$
pp

View this process as "evaluating" $\operatorname{td}_{\mathrm{x}^{*}}$ on circuit C . Then, sk_{C} is the "evaluated signature" for message $C\left(x^{*}\right)=0$.

Result 2: New HomMAC (=>PP-NIZK)

Compact HomMAC for arithmetic circuits of poly. bounded degree based on DDH.

 *Includes NC^{1} !!Core Idea:

- Transform the non-context-hiding HomMAC by [CatFio18@JoC] into a context-hiding HomMAC using (extractable) FE for inner prodoucts (IPFE).

■ Instantiate with DDH-based (extractable) IPFE by [AgrLibSte16@Crypto]

* Since we need the "extractable" feature, the LWE-based IPFE of [AgrLibSte16] cannot be used.

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]
■ KeyGen(): sk $=(s, r) \leftarrow \mathbb{Z}_{p}^{k+1}$
■ $\operatorname{Sign}\left(\right.$ sk, $\left.w_{i} \in \mathbb{Z}_{p}\right): \sigma_{i}$ such that $r_{i}=w_{i}+\sigma_{i} S$

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]
■ KeyGen(): sk $=(s, \boldsymbol{r}) \leftarrow \mathbb{Z}_{p}^{k+1}$
■ Sign(sk, $\left.w_{i} \in \mathbb{Z}_{p}\right): \sigma_{i}$ such that $r_{i}=w_{i}+\sigma_{i} S$
■ SigEval(poly. f s.t. $\left.\operatorname{deg}(f)=D,\left\{\left(w_{i}, \sigma_{i}\right)\right\}_{i \in[k]}\right)$:

$$
\sigma_{f}=\left(c_{1}, \ldots, c_{D}\right) \in \mathbb{Z}_{p}^{D+1} \text { s.t. } f(\boldsymbol{r})=f(\boldsymbol{w})+\sum_{j=1}^{D} c_{j} s^{j}
$$

*Can be computed $w / 0$ knowledge of $s, r!!$

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]

■ KeyGen(): sk $=(s, \boldsymbol{r}) \leftarrow \mathbb{Z}_{p}^{k+1}$
■ Sign(sk, $\left.w_{i} \in \mathbb{Z}_{p}\right): \sigma_{i}$ such that $r_{i}=w_{i}+\sigma_{i} S$
■ SigEval(poly. f s.t. $\left.\operatorname{deg}(f)=D,\left\{\left(w_{i}, \sigma_{i}\right)\right\}_{i \in[k]}\right)$:

$$
\sigma_{f}=\left(c_{1}, \ldots, c_{D}\right) \in \mathbb{Z}_{p}^{D+1} \text { s.t. } f(\boldsymbol{r})=f(\boldsymbol{w})+\sum_{j=1}^{D} c_{j} s^{j}
$$

*Can be computed w / o knowledge of $s, \boldsymbol{r}!$!

- VerifyEvaled(sk, $\left.f,\left(z, \sigma_{f}\right)\right)$:

Compute $f(\boldsymbol{r})$ and check if $f(\boldsymbol{r})=z+\sum_{j=1}^{D} c_{j} S^{j}$

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]

■ KeyGen(): sk $=(s, \boldsymbol{r}) \leftarrow \mathbb{Z}_{p}^{k+1}$
■ Sign(sk, $\left.w_{i} \in \mathbb{Z}_{p}\right): \sigma_{i}$ such that $r_{i}=w_{i}+\sigma_{i} S$
■ SigEval(poly. f s.t. $\left.\operatorname{deg}(f)=D,\left\{\left(w_{i}, \sigma_{i}\right)\right\}_{i \in[k]}\right)$:

$$
\sigma_{f}=\left(c_{1}, \ldots, c_{D}\right) \in \mathbb{Z}_{p}^{D+1} \text { s.t. } f(\boldsymbol{r})=f(\boldsymbol{w})+\sum_{j=1}^{D} c_{j} s^{j}
$$

*Can be computed $w / 0$ knowledge of $s, r!!$

- VerifyEvaled(sk, $\left.f,\left(z, \sigma_{f}\right)\right)$:

Compute $f(\boldsymbol{r})$ and check if $f(\boldsymbol{r})=z+\sum_{j=1}^{D} c_{j} S^{j}$
Not context-hiding since $\sigma_{f}=\left(c_{1}, \ldots, c_{D}\right)$ may leak information of the original msg. w !

High Level Overview of Result 2

Main Observation

- VerifyEvaled(sk, $\left.f,\left(z, \sigma_{f}\right)\right)$:

Compute $f(\boldsymbol{r})$ and check if $f(\boldsymbol{r})=z+\sum_{j=1}^{D} c_{j} S^{j}$
Verification does not need to know $\sigma_{f}=\left(c_{1}, \ldots, c_{D}\right)$, but only the value of $\sum_{j=1}^{D} c_{j} j^{j}!!$

High Level Overview of Result 2

Main Observation

- VerifyEvaled(sk, $\left.f,\left(z, \sigma_{f}\right)\right)$:

Compute $f(\boldsymbol{r})$ and check if $f(\boldsymbol{r})=z+\sum_{j=1}^{D} c_{j} S^{j}$
Verification does not need to know $\sigma_{f}=\left(c_{1}, \ldots, c_{D}\right)$, but only the value of $\sum_{j=1}^{D} c_{j} S^{j}$!!

Use FE for inner products!

(1) Modify SigEval to output an encryption:

$$
\mathrm{ct} \leftarrow \operatorname{IPFE} . \operatorname{Enc}\left(\operatorname{mpk},\left(c_{1}, \ldots, c_{D}\right)\right)
$$

(2) Include $\mathrm{sk}_{\mathrm{IP}} \leftarrow \operatorname{IPFE}$. KeyGen $\left(\operatorname{msk},\left(s, \ldots, s^{D}\right)\right)$ in secret key and change VerifyEvaled to check:

$$
f(\boldsymbol{r}) \stackrel{?}{=} z+\text { IPFE. Dec }\left(\mathrm{sk}_{\mathrm{IP}}, \mathrm{ct}\right)
$$

Questions??

Designated-Verifier Pseudorandom Generators, and their Applications
 Geoffroy Couteau, Dennis Hofheinz

 Karlsruher Institut für Technologie

Reusable Designated-Verifier NIZKs for all NP from CDH
Willy Quach, Ron D. Rothblum, and Daniel Wichs
Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and \Longrightarrow A/ST Takashi Yamakawa

