Designated-Verifier Pseudorandom Generators, and their Applications

Geoffroy Couteau, Dennis Hofheinz

Reusable Designated-Verifier NIZKs for all NP from CDH

Willy Quach, Ron D. Rothblum, and Daniel Wichs

Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa

Zero-Knowledge Proof

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Non-Interactive Zero-Knowledge Proof

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

ots onvince V plution

Designated-Verifier NIZK

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

ots onvince V plution

Designated-Verifier NIZK

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

ots onvince V plution

Designated-Verifier NIZK

- Complete: if P knows a solution, V accepts
- Unbounded Soundness: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

ots Iution, P cannot convince V Diution

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating correlation intractable hash functions (iO, exponentially-strong KDM security, circular FHE)

[RR19]: NIZK from LWE + NIZK for BDD

2019

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating correlation intractable hash functions (iO, exponentially-strong KDM security,

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating correlation intractable hash functions (iO, exponentially-strong KDM security,

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating correlation intractable hash functions (iO, exponentially-strong KDM security,

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are actually easier to build than standard NIZK

2) A (DV)NIZK for NP assuming LWE and the existence of a (DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of [RSS19] which required a NIZK for BDD.

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are actually easier to build than standard NIZK

2) A (DV)NIZK for NP assuming LWE and the existence of a (DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of [RSS19] which required a NIZK for BDD.

But subsumed by [PS19] :)

[DN00]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model > NIZK

NIZK in the hidden-bit model \implies NIZK

NIZK in the hidden-bit model \implies NIZK

The Hidden-Bit Model

The Hidden-Bit Model

13/19

13/19

[FLS90]: NIZKs for NP exist unconditionally in the HBM

The Hidden-Bit Model

Instantiating The Hidden-Bit Model

Cryptographic primitive

Prover's task, given the CRS:

Produce a string which is indistinguishable from random
Be able to provably 'open' positions of this pseudorandom string
The openings should not reveal the non-opened positions

$\mathsf{VPRG}(\mathbf{S}) = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A},$ $Prove(\mathcal{S}, i) = \pi\{The i'th bit of VPRG(\mathcal{S}) using the seed in \mathbb{S} is \mathbb{Q}\}$ Verify(\bigotimes , i, π , \bigotimes) = yes / no

$VPRG(\mathbf{S}) = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$ $Prove(\mathcal{S}, i) = \pi\{ \text{The i'th bit of VPRG}(\mathcal{S}) \text{ using the seed in } \mathcal{S} \text{ is } \mathcal{S} \}$ Verify(\bigotimes , i, π , \bigotimes) = yes / no

- Solar Is short
- The proof leaks nothing more about
- The proof is sound in a strong sense

$VPRG(\mathbf{S}) = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$ $Prove(\mathcal{S}, i) = \pi\{The i'th bit of VPRG(\mathcal{S}) using the seed in \mathcal{S} is \mathbf{G}\}$ Verify(\bigotimes , i, π , \bigotimes) = yes / no

- Solution Is short
- The proof leaks nothing more about
- The proof is sound in a strong sense

$\mathsf{VPRG}(\mathbf{S}) = [\mathcal{Q}]\mathcal{Q}[\mathcal{Q}]\mathcal{Q}[\mathcal{Q}]\mathcal{Q}]\mathcal{Q}$ $Prove(\mathcal{S}, i) = \pi\{ \text{The i'th bit of VPRG}(\mathcal{S}) \text{ using the seed in } \mathcal{S} \text{ is } \mathcal{S} \}$ Verify(\bigotimes , i, π , \bigotimes) = yes / no

- Solar Is short
- The proof leaks nothing more about
- The proof is sound in a strong sense
- 1. Every *is in the image of VPRG(.)*
- 2. For every possible S, there is a unique associated 육요요요요
- 3. Proofs of opening to bits inconsistent with 🖓 🎧 🎝 🎝 🗘 do not exist

1. Every *is in the image of VPRG(.)*

- 2. For every possible 🔊, there is a unique associated 🖓 🆓 🖓 🖓
- 3. Proofs of opening to bits inconsistent with 🖓 🎧 🆓 🆓 🖓 do not exist

1. Every Sis in the image of VPRG(.)

2. For every possible S, there is a unique associated ♀♀♀♀♀

3. Proofs of opening to bits inconsistent with 🖓 🎧 🆓 🎝 🖓 do not exist

1. Every is in the image of VPRG(.)

2. For every possible S, there is a unique associated ♀♀♀♀♀

3'. Proofs of opening to bits inconsistent with 🖓 🎧 🎝 🎝 are hard to find

1. Every F is in the image of VPRG(.) 2. For every possible 🗲, there is a unique associated 🖓 🆓 🖓 🖓 3'. Proofs of opening to bits inconsistent with 🖓 🎧 🖓 🖓 🖓 are hard to find 4. Sis short

Hidden-bit model NIZK S

1. Every F is in the image of VPRG(.) 2. For every possible *▶*, there is a unique associated 🖓 🆓 🆓 🆓 3'. Proofs of opening to bits inconsistent with 🖓 🎧 🖓 🖓 🖓 are hard to find 4. **S** is short

Main Instantiation: DVPRG from CDH

CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

Main Instantiation: DVPRG from CDH

CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

[CKS08], gap twin-CDH: given random g, g^a, g^b, g^c , it is hard to find g^{ab}, g^{ac} even given an oracle for the twin-DDH problem

CDH \iff gap twin-CDH using some secret 'twin-DDH checking key'
CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

[CKS08], gap twin-CDH: given random g, g^a, g^b, g^c , it is hard to find g^{ab}, g^{ac} even given an oracle for the twin-DDH problem

 $CDH \iff gap twin-CDH using some secret 'twin-DDH checking key'$

[GL89]: explicit predicate B(.) such that given random g, g^a, g^b, g^c , it is hard to find $B(g^{ab}, g^{ac})$ with probability >> 1/2 even given an oracle for the twin-DDH problem

CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

[CKS08], gap twin-CDH: given random g, g^a, g^b, g^c , it is hard to find g^{ab}, g^{ac} even given an oracle for the twin-DDH problem

 $CDH \iff gap twin-CDH using some secret 'twin-DDH checking key'$

[GL89]: explicit predicate B(.) such that given random g, g^a, g^b, g^c , it is hard to find $B(g^{ab}, g^{ac})$ with probability >> 1/2 even given an oracle for the twin-DDH problem

CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

[CKS08], gap twin-CDH: given random g, g^a, g^b, g^c , it is hard to find g^{ab}, g^{ac} even given an oracle for the twin-DDH problem

 $CDH \iff gap twin-CDH using some secret 'twin-DDH checking key'$

[GL89]: explicit predicate B(.) such that given random g, g^a, g^b, g^c , t is hard to find $B(g^{ab}, g^{ac})$ with probability >> 1/2 even given an oracle for the twin-DDH problem

CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

[CKS08], gap twin-CDH: given random g, g^a, g^b, g^c , it is hard to find g^{ab}, g^{ac} even given an oracle for the twin-DDH problem

 $CDH \iff gap twin-CDH using some secret 'twin-DDH checking key'$

[GL89]: explicit predicate B(.) such that given random g, g^{a}, g^{b}, g^{c} , t is hard to find $B(g^{ab}, g^{cb}, g^{cb},$ with probability >> 1/2 even given an oracle for the twin-DDH problem

CDH over a group G states that given random g, g^a, g^b , it is hard to find g^{ab}

[CKS08], gap twin-CDH: given random g, g^a, g^b, g^c , it is hard to find g^{ab}, g^{ac} even given an oracle for the twin-DDH problem

 $CDH \iff gap twin-CDH using some secret 'twin-DDH checking key'$

[GL89]: explicit predicate B(.) such that given random g, g^{a}, g^{b}, g^{c} , t is hard to find $B(g^{ab}, g^{c})$ with probability >> 1/2 even given an oracle for the twin-DDH problem

Proof: g^{ab} , g^{ac} + twin-DDH check

Part II: Malicious Designated-Verifier NIZKs

Reusable Designated-Verifier NIZKs for all NP from CDH

Willy Quach

Northeastern

Ron D. Rothblum Technion Daniel Wichs Northeastern

Designated-Verifier NIZK

Prover

Designated-Verifier NIZK

• Need complex setup that interacts with Verifiers

- Need complex setup that interacts with Verifiers
- Simpler setup?

- Need complex setup that interacts with Verifiers
- Simpler setup?
 - Setup of a NIZK?

Malicious Designated-Verifier NIZK (MDV-NIZK)

CTS

x,*w*

 ${\mathcal X}$

• Simple Trusted Setup: only puts a CRS in the sky

Malicious Designated-Verifier NIZK (MDV-NIZK)

X, *W*

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks a secret key himself

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself
- (Any) Prover uses (crs, pk) to generate proofs

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself
- (Any) Prover uses (crs, pk) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself
- (Any) Prover uses (crs, pk) to generate proofs

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself
- (Any) Prover uses (*crs*, *pk*) to generate proofs
- Zero-Knowledge?

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks *pk* himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge?

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks *pk* himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks *pk* himself
- (Any) Prover uses (*crs*, *pk*) to generate proofs
- Zero-Knowledge against malicious verifiers

Security: NIZK-like (only CRS is trusted)

Security: NIZK-like

(only CRS is trusted)

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

Security: NIZK-like

(only CRS is trusted)

- Simple Trusted Setup: only puts a CRS in the sky
- (Any) Verifier picks (pk, k_V) himself
- (Any) Prover uses (crs, pk) to generate proofs
- Zero-Knowledge against malicious verifiers

• Non-opened bits hidden against malicious public keys

Non-opened bits hidden against malicious public keys

Malicious DVPRG \Rightarrow Malicious DV-NIZK

MDV-PRG from DDH?

MDV-PRG from DDH?

MDV-PRG from DDH?

• Malicious Hiding: even against adversarial pk, proof π_i hides s_i for $i \neq j$

• Malicious Hiding: even against adversarial pk, proof π_i hides s_j for $i \neq j$

• Malicious Hiding: even against adversarial pk, proof π_i hides s_j for $i \neq j$

• Malicious Hiding: even against adversarial pk, proof π_i hides s_i for $i \neq j$

- Malicious Hiding: even against adversarial pk, proof π_i hides s_i for $i \neq j$
 - Malicious Verifier can learn other bits!

- Malicious Hiding: even against adversarial pk, proof π_i hides s_j for $i \neq j$
 - Add random dependencies?

• Malicious Hiding: even against adversarial pk, proof π_i hides s_j for $i \neq j$

• Malicious Hiding: even against adversarial pk, proof π_i hides s_j for $i \neq j$

• Malicious Hiding: even against adversarial pk, proof π_i hides s_i for $i \neq j$

• Malicious Hiding: even against adversarial pk, proof π_i hides s_i for $i \neq j$

Theorem: MDV-PRG under One-More CDH

Theorem: MDV-PRG under One-More CDH

Corollary: MDV-NIZK from One-More CDH

@EUROCRYPT'19

Part3: Designated Verifier/Prover Preprocessing NIZKs from Diffie-Hellman Assumptions

<u>Shuichi Katsumata</u> (AIST), Ryo Nishimaki (NTT), Shota Yamada (AIST), Takashi Yamakawa (NTT).

- **1.** <u>**DV**</u>-NIZK from the **CDH** assumption (with "long" proof size).
- 2. <u>DP</u>-NIZK from non-static DH-type assumption over pairing groups with "short" proof size.
- **3.** <u>**PP</u>-NIZK from the DDH** assumption with "short" proof size.</u>

Our Result

1. <u>DV</u>-NIZK from the CDH assumption (with "long" proof size).

 <u>DP</u>-NIZK from non-static DH-type assumption over pairing groups with "short" proof size.

3. <u>PP</u>-NIZK from the DDH assumption with "short" proof size.
This Talk

Motivation

NIZK with $|\pi|$ independent of circuit *C* computing the NP relation is only known from strong assumptions:

(*)iO, FHE, knowledge assumptions, compact HomSig.

NIZK with $|\pi|$ independent of circuit *C* computing the NP relation is only known from strong assumptions:

(*)iO, FHE, knowledge assumptions, compact HomSig.

Without (*):

- DV-NIZK from CDH has proof size $poly(\lambda, |C|)$.
- Famous GOS CRS-NIZK has proof size $O(\lambda |C|)$.
- <u>Shortest know</u> is CRS-NIZK of [Gro10@AC] based on Naccache-Stern PKE has proof size $polylog(\lambda)|C|$.

NIZK with $|\pi|$ independent of circuit *C* computing the NP relation is only known from strong assumptions:

(*)iO, FHE, knowledge assumptions, compact HomSig.

Without (*):

- DV-NIZK from CDH has proof size $poly(\lambda, |C|)$.
- Famous GOS CRS-NIZK has proof size $O(\lambda |C|)$.
- <u>Shortest know</u> is CRS-NIZK of [Gro10@AC] based on Naccache-Stern PKE has proof size $polylog(\lambda)|C|$.

Multiplicative overhead in |C|...

Motivation

- DV-NIZK HOIL COLLINGS PLOOF SIZE POLY(7, 197)
- Famous GOS CRS-NIZK has proof size $O(\lambda |C|)$.
- <u>Shortest know</u> is CRS-NIZK of [Gro10@AC] based on Naccache-Stern PKE has proof size $polylog(\lambda)|C|$.

Multiplicative overhead in |C|...

Recap: (DP, PP)-NIZKs

Designated-Prover NIZKs

Proving Key k_P

*Opposite to DV-NIZKs

Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

Proving Key k_P

Verifying Key $k_{V} \\$

*Relaxation of DP and DV-NIZKs

Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

Proving Key \boldsymbol{k}_{P}

Verifying Key $k_{V} \\$

Result of [KimWu18@Crypto]

Any **context-hiding homomorphic signatures/MACs** (HomSig/MAC) can be converted into **DP/PP-NIZKs**.

HomSig/MAC in a Nutshell

HomSig/MAC in a Nutshell

- > Unforgeability
- Context-Hiding: Evaluated signature (C(w), σ_C) leaks no information of the original message w.

HomSig/MAC in a Nutshell

Context-Hiding: Evaluated signature (C(w), σ_C) leaks no information of the original message w.

Result 1: New HomSig (=>DP-NIZK)

Compact HomSig for NC¹ based on a **nonstatic Diffie-Hellman** type assumption.

<u>Core Idea:</u>

- View the simulator used in certain Key-Policy ABE security proofs as HomSigs.
- Construct Key-Policy ABE with constant-sized secretkeys from non-static DH type assumptions building on [RW13, AC16, AC17].

Result 2: New HomMAC (=>PP-NIZK)

Compact HomMAC for **arithmetic circuits of poly. bounded degree** based on **DDH**. *Includes NC¹!!

<u>Core Idea:</u>

Transform the <u>non-context-hiding</u> HomMAC by [CatFio18@JoC] into a <u>context-hiding</u> HomMAC using (extractable) FE for inner prodoucts (IPFE).

Instantiate with DDH-based (extractable) IPFE by [AgrLibSte16@Crypto]

* Since we need the "extractable" feature, the LWE-based IPFE of [AgrLibSte16] cannot be used.

Non-context-hiding HomMAC by [CatFio18]

• KeyGen(): sk =
$$(s, r) \leftarrow \mathbb{Z}_p^{k+1}$$

Sign(sk, $w_i \in \mathbb{Z}_p$): σ_i such that $r_i = w_i + \sigma_i s$

<u>Non-context-hiding</u> HomMAC by [CatFio18]

KeyGen(): sk =
$$(s, r) \leftarrow \mathbb{Z}_p^{k+1}$$

Sign(sk, $w_i \in \mathbb{Z}_p$): σ_i such that $r_i = w_i + \sigma_i s$

SigEval(poly. f s.t. deg(f) = D, $\{(w_i, \sigma_i)\}_{i \in [k]}\}$: $\sigma_f = (c_1, \dots, c_D) \in \mathbb{Z}_p^{D+1}$ s.t. $f(r) = f(w) + \sum_{j=1}^D c_j s^j$ *Can be computed w/o knowledge of s, r!!

<u>Non-context-hiding</u> HomMAC by [CatFio18]

KeyGen(): sk =
$$(s, r) \leftarrow \mathbb{Z}_p^{k+1}$$

Sign(sk, $w_i \in \mathbb{Z}_p$): σ_i such that $r_i = w_i + \sigma_i s$

■ SigEval(poly. f s.t. deg(f) = D, $\{(w_i, \sigma_i)\}_{i \in [k]}\}$: $\sigma_f = (c_1, \dots, c_D) \in \mathbb{Z}_p^{D+1}$ s.t. $f(r) = f(w) + \sum_{j=1}^D c_j s^j$ *Can be computed w/o knowledge of s, r!!

VerifyEvaled(sk, f, (z, σ_f)):
Compute f(r) and check if $f(r) = z + \sum_{j=1}^{D} c_j s^j$

<u>Non-context-hiding</u> HomMAC by [CatFio18]

KeyGen(): sk =
$$(s, r) \leftarrow \mathbb{Z}_p^{k+1}$$

Sign(sk, $w_i \in \mathbb{Z}_p$): σ_i such that $r_i = w_i + \sigma_i s$

- SigEval(poly. f s.t. deg(f) = D, $\{(w_i, \sigma_i)\}_{i \in [k]}\}$: $\sigma_f = (c_1, \dots, c_D) \in \mathbb{Z}_p^{D+1}$ s.t. $f(r) = f(w) + \sum_{j=1}^D c_j s^j$ *Can be computed w/o knowledge of s, r!!
- VerifyEvaled(sk, f, (z, σ_f)): Compute $f(\mathbf{r})$ and check if $f(\mathbf{r}) = z + \sum_{j=1}^{D} c_j s^j$

Not context-hiding since $\sigma_f = (c_1, \dots, c_D)$ may leak information of the original msg. w!

Main Observation

■ VerifyEvaled(sk, f, (z, σ_f)): Compute f(r) and check if $f(r) = z + \sum_{j=1}^{D} c_j s^j$ Verification does <u>not</u> need to know $\sigma_f = (c_1, ..., c_D)$, but only the value of $\sum_{j=1}^{D} c_j s^j$!!

Main Observation

■ VerifyEvaled(sk, f, (z, σ_f)): Compute f(r) and check if $f(r) = z + \sum_{j=1}^{D} c_j s^j$ Verification does <u>not</u> need to know $\sigma_f = (c_1, ..., c_D)$, but only the value of $\sum_{j=1}^{D} c_j s^j$!!

Use FE for inner products!

(1) Modify SigEval to output an encryption: $ct \leftarrow IPFE. Enc(mpk, (c_1, ..., c_D))$ (2) Include $sk_{IP} \leftarrow IPFE. KeyGen(msk, (s, ..., s^D))$ in secret key and change VerifyEvaled to check: $f(r) \stackrel{?}{=} z + IPFE. Dec(sk_{IP}, ct)$

Questions??

Designated-Verifier Pseudorandom Generators, and their Applications

Geoffroy Couteau, Dennis Hofheinz

Reusable Designated-Verifier NIZKs for all NP from CDH

Willy Quach, Ron D. Rothblum, and Daniel Wichs

Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and

Takashi Yamakawa

