
Designated-Verifier Pseudorandom 
Generators, and their Applications

Geoffroy Couteau, Dennis Hofheinz 

 1

Designated Verifier/Prover and Preprocessing 
NIZKs from Diffie-Hellman Assumptions

Willy Quach, Ron D. Rothblum, and Daniel Wichs 

Reusable Designated-Verifier NIZKs for all NP 
from CDH

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and 
Takashi Yamakawa

/19



Zero-Knowledge Proof

• Complete: if P knows a solution, V accepts 
• Sound: if there is no solution, P cannot convince V 
• Zero-Knowledge: V does not learn the solution

verifier Vprover P

 2 /19



Non-Interactive Zero-
Knowledge Proof

• Complete: if P knows a solution, V accepts 
• Sound: if there is no solution, P cannot convince V 
• Zero-Knowledge: V does not learn the solution

verifier Vprover P

 3 /19



• Complete: if P knows a solution, V accepts 
• Sound: if there is no solution, P cannot convince V 
• Zero-Knowledge: V does not learn the solution

verifier Vprover P

 4

Designated-Verifier NIZK

/19



• Complete: if P knows a solution, V accepts 
• Sound: if there is no solution, P cannot convince V 
• Zero-Knowledge: V does not learn the solution

verifier Vprover P

 4

Designated-Verifier NIZK

/19



• Complete: if P knows a solution, V accepts 
• Unbounded Soundness: if there is no solution, P cannot convince V 
• Zero-Knowledge: V does not learn the solution

verifier Vprover P

 5

Designated-Verifier NIZK

yes/no

/19



Brief History of (DV)NIZKs

2019

 6 /28

1985

ZKP 
[GMR85], seminal paper 
on zero-knowledge proofs

87-88

NIZK from new assumptions 
[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating 
correlation intractable hash functions (iO, exponentially-strong KDM security, 
circular FHE) 

[RR19]: NIZK from LWE + NIZK for BDD 

[PS19]: NIZK from LWE (!)

1990 2000 2003

NIZK 
[Ore87], [GMR88], impossibility of 
NIZK in the plain model + seminal 
paper on NIZKs with CRS, NIZK 
from quadratic residuosity

NIZK from TDP 
[FLS90], f i rst NIZK from a generic 
assumption, introduces the hidden-bit model

NIZK from VPRG 
[DN00], first NIZK from a necessary and 
sufficient assumption

NIZK from pairings 
[CHK03], inefficient construction 
[GOS06b,GOS06a,GS08] & follow-ups, 
efficient pairing-based NIZKs.

2016-2018



(DV,DP…)-NIZK with 
Unbounded soundness 
[CC18]: DVNIZK from homomorphic encryption 
[KW18]: DPNIZK from LWE 
[BCGI18]: preprocessing NIZK from LPNDVNIZK 

[PsV06], [DFM06], DVNIZK from 
public-key encryption & efficient NIZK 
from homomorphic encryption

Preprocessing NIZK 
[DMP90]: preprocessing NIZK from 
OWF

Brief History of (DV)NIZKs

2019

This Work

 6 /28

1985

ZKP 
[GMR85], seminal paper 
on zero-knowledge proofs

87-88

NIZK from new assumptions 
[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating 
correlation intractable hash functions (iO, exponentially-strong KDM security, 
circular FHE) 

[RR19]: NIZK from LWE + NIZK for BDD 

[PS19]: NIZK from LWE (!)

1990 2000 2003

NIZK 
[Ore87], [GMR88], impossibility of 
NIZK in the plain model + seminal 
paper on NIZKs with CRS, NIZK 
from quadratic residuosity

NIZK from TDP 
[FLS90], f i rst NIZK from a generic 
assumption, introduces the hidden-bit model

NIZK from VPRG 
[DN00], first NIZK from a necessary and 
sufficient assumption

NIZK from pairings 
[CHK03], inefficient construction 
[GOS06b,GOS06a,GS08] & follow-ups, 
efficient pairing-based NIZKs.

2016-2018



(DV,DP…)-NIZK with 
Unbounded soundness 
[CC18]: DVNIZK from homomorphic encryption 
[KW18]: DPNIZK from LWE 
[BCGI18]: preprocessing NIZK from LPNDVNIZK 

[PsV06], [DFM06], DVNIZK from 
public-key encryption & efficient NIZK 
from homomorphic encryption

Preprocessing NIZK 
[DMP90]: preprocessing NIZK from 
OWF

Brief History of (DV)NIZKs

2019

This Work

 6 /28

Bounded soundness

1985

ZKP 
[GMR85], seminal paper 
on zero-knowledge proofs

87-88

NIZK from new assumptions 
[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating 
correlation intractable hash functions (iO, exponentially-strong KDM security, 
circular FHE) 

[RR19]: NIZK from LWE + NIZK for BDD 

[PS19]: NIZK from LWE (!)

1990 2000 2003

NIZK 
[Ore87], [GMR88], impossibility of 
NIZK in the plain model + seminal 
paper on NIZKs with CRS, NIZK 
from quadratic residuosity

NIZK from TDP 
[FLS90], f i rst NIZK from a generic 
assumption, introduces the hidden-bit model

NIZK from VPRG 
[DN00], first NIZK from a necessary and 
sufficient assumption

NIZK from pairings 
[CHK03], inefficient construction 
[GOS06b,GOS06a,GS08] & follow-ups, 
efficient pairing-based NIZKs.

2016-2018



(DV,DP…)-NIZK with 
Unbounded soundness 
[CC18]: DVNIZK from homomorphic encryption 
[KW18]: DPNIZK from LWE 
[BCGI18]: preprocessing NIZK from LPNDVNIZK 

[PsV06], [DFM06], DVNIZK from 
public-key encryption & efficient NIZK 
from homomorphic encryption

Preprocessing NIZK 
[DMP90]: preprocessing NIZK from 
OWF

Brief History of (DV)NIZKs

2019

 6 /28

Bounded soundness
This Work

1985

ZKP 
[GMR85], seminal paper 
on zero-knowledge proofs

87-88

NIZK from new assumptions 
[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating 
correlation intractable hash functions (iO, exponentially-strong KDM security, 
circular FHE) 

[RR19]: NIZK from LWE + NIZK for BDD 

[PS19]: NIZK from LWE (!)

1990 2000 2003

NIZK 
[Ore87], [GMR88], impossibility of 
NIZK in the plain model + seminal 
paper on NIZKs with CRS, NIZK 
from quadratic residuosity

NIZK from TDP 
[FLS90], f i rst NIZK from a generic 
assumption, introduces the hidden-bit model

NIZK from VPRG 
[DN00], first NIZK from a necessary and 
sufficient assumption

NIZK from pairings 
[CHK03], inefficient construction 
[GOS06b,GOS06a,GS08] & follow-ups, 
efficient pairing-based NIZKs.

2016-2018



Our Contribution
We obtain two new constructions:

 

1) A DVNIZK for NP under the CDH assumption  
 
First direct indication that DVNIZK with unbounded soundness are 
actually easier to build than standard NIZK 

2) A (DV)NIZK for NP assuming LWE and the existence of a 
(DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of 
[RSS19] which required a NIZK for BDD.

 7 /19



Our Contribution
We obtain two new constructions:

 

1) A DVNIZK for NP under the CDH assumption  
 
First direct indication that DVNIZK with unbounded soundness are 
actually easier to build than standard NIZK 

2) A (DV)NIZK for NP assuming LWE and the existence of a 
(DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of 
[RSS19] which required a NIZK for BDD.

 7

But subsumed  
by [PS19] :)

/19



Roadmap
[DN00]:  Verifiable Pseudorandom Generator  +  NIZK in the hidden-bit model          NIZK

 8 /19



Roadmap
[DN00]:  Verifiable Pseudorandom Generator  +  NIZK in the hidden-bit model          NIZK

Verifiable Pseudorandom Generator:
- Relaxed soundness
- Generalization to the DV setting

 8 /19



Roadmap
[DN00]:  Verifiable Pseudorandom Generator  +  NIZK in the hidden-bit model          NIZK

Verifiable Pseudorandom Generator:
- Relaxed soundness
- Generalization to the DV setting

+  NIZK in the hidden-bit model          NIZK

 8 /19



Roadmap
[DN00]:  Verifiable Pseudorandom Generator  +  NIZK in the hidden-bit model          NIZK

Verifiable Pseudorandom Generator:
- Relaxed soundness
- Generalization to the DV setting

+  NIZK in the hidden-bit model          NIZK

Relaxed DVPRG 
from CDH

 8 /19



Roadmap
[DN00]:  Verifiable Pseudorandom Generator  +  NIZK in the hidden-bit model          NIZK

Verifiable Pseudorandom Generator:
- Relaxed soundness
- Generalization to the DV setting

+  NIZK in the hidden-bit model          NIZK

Relaxed DVPRG 
from CDH

 8 /19



The Hidden-Bit Model

 9 /19



The Hidden-Bit Model

 10/19



The Hidden-Bit Model

 11/19



The Hidden-Bit Model

 12/19



The Hidden-Bit Model

 13/19



The Hidden-Bit Model

[FLS90]: NIZKs for NP exist unconditionally in the HBM
 13/19



Instantiating The Hidden-Bit Model
Cryptographic primitive

1.Produce a string which is indistinguishable from random
2.Be able to provably ‘open’ positions of this pseudorandom string
3.The openings should not reveal the non-opened positions

Prover’s task, given the CRS:

 14/19



Verifiable Pseudorandom Generators

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ,    ), i, = yes / noπ

 15/19



Verifiable Pseudorandom Generators

•     Is short
• The proof leaks nothing more about
• The proof is sound in a strong sense

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ,    ), i, = yes / noπ

 15/19



Verifiable Pseudorandom Generators

•     Is short
• The proof leaks nothing more about
• The proof is sound in a strong sense

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ), i, = yes / noπ

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ,    ), i, = yes / noπ

 16/19



Verifiable Pseudorandom Generators

•     Is short
• The proof leaks nothing more about
• The proof is sound in a strong sense

1. Every       is in the image of VPRG(.)  
2. For every possible      , there is a unique associated 
3. Proofs of opening to bits inconsistent with                         do not exist

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ), i, = yes / noπ

VPRG(     ) = ,

Prove(        ), i = π The i’th bit of                 using the seed in      is VPRG(     ){ }

Verify(             ,    ), i, = yes / noπ

 16/19



Relaxing VPRGs

1.  Every       is in the image of VPRG(.)  
2.  For every possible      , there is a unique associated 
3.  Proofs of opening to bits inconsistent with                         do not exist

 17/19



Relaxing VPRGs

1.  Every       is in the image of VPRG(.)  
2.  For every possible      , there is a unique associated 
3.  Proofs of opening to bits inconsistent with                         do not exist

 17/19



Relaxing VPRGs

1.  Every       is in the image of VPRG(.)  
2.  For every possible      , there is a unique associated 
3’. Proofs of opening to bits inconsistent with                         are hard to find

 18/19



Relaxing VPRGs

1.  Every       is in the image of VPRG(.)  
2.  For every possible      , there is a unique associated 
3’. Proofs of opening to bits inconsistent with                         are hard to find
4.      is short

 19/19



Relaxing VPRGs

1.  Every       is in the image of VPRG(.)  
2.  For every possible      , there is a unique associated 
3’. Proofs of opening to bits inconsistent with                         are hard to find
4.      is short

 19

, , S ,{πi}i∈S

Hidden-bit model NIZK

S

VPRG

XORed with the CRS, then
used as the hidden bit string

𝖢𝖱𝖲 C

/19



Relaxing VPRGs

1.  Every       is in the image of VPRG(.)  
2.  For every possible      , there is a unique associated 
3’. Proofs of opening to bits inconsistent with                         are hard to find
4.      is short

 19

, , S ,{πi}i∈S

Hidden-bit model NIZK

S

VPRG

XORed with the CRS, then
used as the hidden bit string

𝖢𝖱𝖲 C

Proof Idea:
•      is ‘close to a bad string’ if          , Ext(     )          is bad
• Proof accepted iff inconsistent opening OR the CRS is « 

close to a bad string » (requires (2))
• Inconsistent opening        contradiction to VPRG (3’) 
• Since      is short, few CRS are close to a bad string. 

∃ ⊕ CC

/19



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

/19 20

Main Instantiation: DVPRG from CDH



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

g, ga, gb, gc[CKS08], gap twin-CDH: given random                       , it is hard to find                
even given an oracle for the twin-DDH problem

gab, gac

CDH        gap twin-CDH using some secret ‘twin-DDH checking key’ 

/19 20

Main Instantiation: DVPRG from CDH



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

g, ga, gb, gc[CKS08], gap twin-CDH: given random                       , it is hard to find                
even given an oracle for the twin-DDH problem

gab, gac

CDH        gap twin-CDH using some secret ‘twin-DDH checking key’ 

g, ga, gb, gc[GL89]: explicit predicate B(.) such that given random                      , it is hard to find                
with probability >> 1/2 even given an oracle for the twin-DDH problem

B(gab, gac)

Equivalent to CDH

/19 20

Main Instantiation: DVPRG from CDH



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

g, ga, gb, gc[CKS08], gap twin-CDH: given random                       , it is hard to find                
even given an oracle for the twin-DDH problem

gab, gac

CDH        gap twin-CDH using some secret ‘twin-DDH checking key’ 

g, ga, gb, gc[GL89]: explicit predicate B(.) such that given random                      , it is hard to find                
with probability >> 1/2 even given an oracle for the twin-DDH problem

B(gab, gac)

Equivalent to CDH

=

/19 20

Main Instantiation: DVPRG from CDH



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

g, ga, gb, gc[CKS08], gap twin-CDH: given random                       , it is hard to find                
even given an oracle for the twin-DDH problem

gab, gac

CDH        gap twin-CDH using some secret ‘twin-DDH checking key’ 

g, ga, gb, gc[GL89]: explicit predicate B(.) such that given random                      , it is hard to find                
with probability >> 1/2 even given an oracle for the twin-DDH problem

B(gab, gac)

Equivalent to CDH

= public parameters

=

/19 20

Main Instantiation: DVPRG from CDH



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

g, ga, gb, gc[CKS08], gap twin-CDH: given random                       , it is hard to find                
even given an oracle for the twin-DDH problem

gab, gac

CDH        gap twin-CDH using some secret ‘twin-DDH checking key’ 

g, ga, gb, gc[GL89]: explicit predicate B(.) such that given random                      , it is hard to find                
with probability >> 1/2 even given an oracle for the twin-DDH problem

B(gab, gac)

Equivalent to CDH

= public parameters

=

= pseudorandom bit associated to     with respect to
/19 20

Main Instantiation: DVPRG from CDH



g, ga, gb gab𝔾CDH over a group       states that given random                 , it is hard to find

g, ga, gb, gc[CKS08], gap twin-CDH: given random                       , it is hard to find                
even given an oracle for the twin-DDH problem

gab, gac

CDH        gap twin-CDH using some secret ‘twin-DDH checking key’ 

g, ga, gb, gc[GL89]: explicit predicate B(.) such that given random                      , it is hard to find                
with probability >> 1/2 even given an oracle for the twin-DDH problem

B(gab, gac)

Equivalent to CDH

= public parameters

=

= pseudorandom bit associated to     with respect to

gab, gacProof:            
+ twin-DDH check

/19 20

Main Instantiation: DVPRG from CDH



Part II: Malicious
Designated-Verifier NIZKs

Reusable Designated-Verifier NIZKs 
for all NP from CDH

Willy Quach

Northeastern

Ron D. Rothblum

Technion

Daniel Wichs

Northeastern



Designated-Verifier NIZK

VerifierProver



Designated-Verifier NIZK

VerifierProver

𝜋

𝑐𝑟𝑠

𝑥, 𝑤
𝑘𝑉
𝑥

Y/N



Designated-Verifier NIZK

VerifierProver

𝜋𝑥, 𝑤 𝑥

𝑘𝑉
𝑐𝑟𝑠



Designated-Verifier NIZK

• Need complex setup that interacts with Verifiers

VerifierProver

𝜋𝑥, 𝑤 𝑥

𝑘𝑉
𝑐𝑟𝑠



Designated-Verifier NIZK

• Need complex setup that interacts with Verifiers

• Simpler setup?

VerifierProver

𝜋𝑥, 𝑤 𝑥

𝑘𝑉
𝑐𝑟𝑠



Designated-Verifier NIZK

• Need complex setup that interacts with Verifiers

• Simpler setup?

• Setup of a NIZK?

VerifierProver

𝜋𝑥, 𝑤 𝑥

𝑘𝑉
𝑐𝑟𝑠



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• qsd

VerifierProver

𝑥, 𝑤 𝑥

𝑐𝑟𝑠

Malicious Designated-Verifier NIZK (MDV-NIZK)



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks a secret key himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• qsd

VerifierProver

𝑥, 𝑤 𝑥

𝑐𝑟𝑠

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• 𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• qsd

VerifierProver

𝑥, 𝑤 𝑥

𝑐𝑟𝑠

𝑝𝑘

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• qsd

VerifierProver

𝑥, 𝑤 𝑥

𝑐𝑟𝑠

𝑝𝑘

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉
𝜋



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• qsd

VerifierProver

𝑥, 𝑤 𝑥

𝑐𝑟𝑠

𝑝𝑘

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉
𝜋

Y/N



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• qsd

VerifierProver

𝜋𝑥, 𝑤 𝑥

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉

෦𝑐𝑟𝑠 =
𝑐𝑟𝑠

𝑝𝑘

Syntax: DV-NIZK-like



Malicious Designated-Verifier NIZK (MDV-NIZK)

• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge?

VerifierProver

𝜋𝑥, 𝑤 𝑥
𝑘𝑉

Syntax: DV-NIZK-like

𝑐𝑟𝑠

𝑝𝑘



Malicious Designated-Verifier NIZK (MDV-NIZK)

• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks 𝑝𝑘 himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge?

VerifierProver

𝜋𝑥, 𝑤 𝑥
𝑘𝑉

𝑐𝑟𝑠

𝑝𝑘

Syntax: DV-NIZK-like



Malicious Designated-Verifier NIZK (MDV-NIZK)

• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks 𝑝𝑘 himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge against malicious verifiers

VerifierProver

𝜋𝑥, 𝑤 𝑥
𝑘𝑉

𝑐𝑟𝑠

𝑝𝑘

Syntax: DV-NIZK-like



Malicious Designated-Verifier NIZK (MDV-NIZK)

• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks 𝑝𝑘 himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge against malicious verifiers

VerifierProver

𝜋𝑥, 𝑤 𝑥
𝑘𝑉

Security: NIZK-like 
(only CRS is trusted)

𝑐𝑟𝑠

𝑝𝑘

Syntax: DV-NIZK-like



Malicious Designated-Verifier NIZK (MDV-NIZK)

• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge against malicious verifiers

Prover

𝜋𝑥, 𝑤 𝑥

Security: NIZK-like 
(only CRS is trusted)

𝑐𝑟𝑠

Syntax: DV-NIZK-like

Verifier
𝑝𝑘

𝑘𝑉



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge against malicious verifiers

VerifierProver

𝜋𝑥, 𝑤 𝑥

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉

Security: NIZK-like 
(only CRS is trusted)

𝑝𝑘

𝑐𝑟𝑠

Syntax: DV-NIZK-like



• Simple Trusted Setup: only puts a CRS in the sky

• (Any) Verifier picks (𝑝𝑘, 𝑘𝑉) himself

• (Any) Prover uses (𝑐𝑟𝑠, 𝑝𝑘) to generate proofs

• Zero-Knowledge against malicious verifiers

VerifierProver

𝜋𝑥, 𝑤 𝑥

Malicious Designated-Verifier NIZK (MDV-NIZK)

𝑘𝑉

Security: NIZK-like 
(only CRS is trusted)

𝑝𝑘

𝑐𝑟𝑠

Syntax: DV-NIZK-like
2-round Zero-Knowledge

with reusable first message



Roadmap

Hidden Bits NIZK +

VPRG NIZK

DVPRG DV-NIZK



Roadmap

Hidden Bits NIZK +

VPRG NIZK

DVPRG DV-NIZK

MDVPRG MDV-NIZK



Roadmap

Hidden Bits NIZK +

VPRG NIZK

DVPRG DV-NIZK

MDVPRG MDV-NIZK



DVPRG

• keys

VerifierProver

𝑘𝑉
, 𝝅,

𝑐𝑟𝑠



DVPRG

• keys

VerifierProver

𝑘𝑉
, 𝝅,

, 𝝅𝒊

𝑐𝑟𝑠

Y/N



Malicious DVPRG

• keys

VerifierProver
𝑝𝑘

𝑘𝑉
, 𝝅,

, 𝝅𝒊

𝑐𝑟𝑠

Y/N



Malicious DVPRG

• Non-opened bits hidden against malicious public keys

VerifierProver
𝑝𝑘

𝑘𝑉
, 𝝅,

, 𝝅𝒊

𝑐𝑟𝑠



Malicious DVPRG

• Non-opened bits hidden against malicious public keys

VerifierProver
𝑝𝑘

𝑘𝑉
, 𝝅,

, 𝝅𝒊

𝑐𝑟𝑠

Malicious DVPRG ⇒ Malicious DV-NIZK



MDV-PRG from DDH?



MDV-PRG from DDH?

𝑔𝑠



MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑐𝑟𝑠

a.k.a 𝑔𝑏𝑖



MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

.

.

.

𝑐𝑟𝑠

a.k.a 𝑔𝑏𝑖



MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

.

.

.

𝑐𝑟𝑠

𝑓1

𝑓𝑘

.

.

.

𝑐𝑟𝑠

a.k.a 𝑔𝑐𝑖a.k.a 𝑔𝑏𝑖



MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

.

.

.

𝑐𝑟𝑠

𝑓1

𝑓𝑘

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = 𝑓𝑘
𝑠

.

.

.

𝑐𝑟𝑠 𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

a.k.a 𝑔𝑐𝑖a.k.a 𝑔𝑏𝑖



MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

.

.

.

𝑐𝑟𝑠

𝑓1

𝑓𝑘

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = 𝑓𝑘
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘

a.k.a 𝑔𝑐𝑖a.k.a 𝑔𝑏𝑖



MDV-PRG from DDH?

• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

.

.

.

𝑐𝑟𝑠

𝑓1

𝑓𝑘

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = 𝑓𝑘
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



MDV-PRG from DDH?

• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

.

.

.

𝑐𝑟𝑠

𝑓1

𝑓𝑘

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = 𝑓𝑘
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

.

.

.

𝑐𝑟𝑠

𝑓1

ℎ1

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = ℎ1
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

.

.

.

𝑐𝑟𝑠

𝑓1

ℎ1

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = ℎ1
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘

= 𝑠1



• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗
• Malicious Verifier can learn other bits!

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

.

.

.

𝑐𝑟𝑠

𝑓1

ℎ1

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = ℎ1
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘

= 𝑠1



• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗
• Add random dependencies?

𝑠1 = ℎ1
𝑠

𝑠𝑘 = ℎ𝑘
𝑠

MDV-PRG from DDH?

𝑔𝑠 +

ℎ1

ℎ𝑘

.

.

.

.

.

.

𝑐𝑟𝑠

𝑓1

ℎ1

.

.

.

𝜋1 = 𝑓1
𝑠

𝜋𝑘 = ℎ1
𝑠

.

.

.

𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘

= 𝑠1



Adding dependencies

• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

𝑐𝑟𝑠 𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



Adding dependencies

• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



Adding dependencies

• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



Adding dependencies

• Malicious Hiding: even against adversarial 𝑝𝑘, proof 𝝅𝑖 hides 𝒔𝑗 for 𝑖 ≠ 𝑗

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝜋1 = 𝑓𝑖
𝑠, … , 𝑓𝑗

𝑠

𝜋𝑘 = 𝑓𝑖′
𝑠, … , 𝑓𝑗′

𝑠

.

.

.

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅

Twin DDH Check
a.k.a

Cramer Shoup proof

𝑝𝑘



Adding dependencies

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝜋1 = 𝑓𝑖
𝑠, … , 𝑓𝑗

𝑠

𝜋𝑘 = 𝑓𝑖′
𝑠, … , 𝑓𝑗′

𝑠

.

.

.

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅𝑝𝑘



Adding dependencies

• needs all the elements ℎ𝑖
𝑠, … ℎ𝑗

𝑠 to recover 𝑠1

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝜋1 = 𝑓𝑖
𝑠, … , 𝑓𝑗

𝑠

𝜋𝑘 = 𝑓𝑖′
𝑠, … , 𝑓𝑗′

𝑠

.

.

.

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅𝑝𝑘



Adding dependencies

• needs all the elements ℎ𝑖
𝑠, … ℎ𝑗

𝑠 to recover 𝑠1

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝜋1 = 𝑓𝑖
𝑠, … , 𝑓𝑗

𝑠

𝜋𝑘 = 𝑓𝑖′
𝑠, … , 𝑓𝑗′

𝑠

.

.

.

𝑓1

𝑓𝑖
𝑓𝑗

𝑓ℓ

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅𝑝𝑘

Some random ℎ𝑖
𝑠

unique to 𝑠1



Adding dependencies

• needs all the elements ℎ𝑖
𝑠, … ℎ𝑗

𝑠 to recover 𝑠1

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝜋1 = ℎ𝑛
𝑠 , … , ℎ𝑚

𝑠

𝜋𝑘 = ℎ𝑖′
𝑠 , … , ℎ𝑗′

𝑠

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅𝑝𝑘

Some random ℎ𝑖
𝑠

unique to 𝑠1

ℎ𝑖′

ℎ𝑛
ℎ𝑚

ℎ2



Adding dependencies

• needs all the elements ℎ𝑖
𝑠, … ℎ𝑗

𝑠 to recover 𝑠1

𝑔𝑠 +

ℎ1

ℎ𝑖
ℎ𝑗

ℎℓ

𝑠1 = hc(ℎ𝑖
𝑠, … ℎ𝑗

𝑠)

𝑠𝑘 = hc(ℎ𝑖′
𝑠 , … ℎ𝑗′

𝑠 )

.

.

.

𝜋1 = ℎ𝑛
𝑠 , … , ℎ𝑚

𝑠

𝜋𝑘 = ℎ𝑖′
𝑠 , … , ℎ𝑗′

𝑠

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random
𝑐𝑟𝑠 𝝅𝑝𝑘

Some random ℎ𝑖
𝑠

unique to 𝑠1

ℎ𝑖′

ℎ𝑛
ℎ𝑚

ℎ2 No ℎ𝑖
𝑠 in any 𝜋𝑗 w.h.p



Our result



Our result

Theorem: MDV-PRG under One-More CDH



Our result

Corollary: MDV-NIZK from One-More CDH

Theorem: MDV-PRG under One-More CDH



Part3: 
Designated Verifier/Prover 
Preprocessing NIZKs from 
Diffie-Hellman Assumptions

@EUROCRYPT’19

Shuichi Katsumata (AIST),	Ryo	Nishimaki (NTT),	
Shota	Yamada	(AIST),	Takashi	Yamakawa (NTT).



1. DV-NIZK	from	the	CDH assumption	(with	
“long”	proof	size).

2. DP-NIZK	from	non-static	DH-type assumption	
over	pairing	groups	with	“short”	proof	size.

3. PP-NIZK	from	the	DDH assumption	with	
“short”	proof	size.

Our	Result



1. DV-NIZK	from	the	CDH assumption	(with	
“long”	proof	size).

2. DP-NIZK	from	non-static	DH-type assumption	
over	pairing	groups	with	“short”	proof	size.

3. PP-NIZK	from	the	DDH assumption	with	
“short”	proof	size.

DONE

This	Talk

Our	Result



NIZK	with	|𝜋| independent	of	circuit	𝐶 computing	the	
NP	relation	is	only	known	from	strong	assumptions:	

(*)iO,	FHE,	knowledge	assumptions,	compact	HomSig.

Motivation



• DV-NIZK	from	CDH	has	proof	size	poly(𝜆, |C|).
• Famous	GOS	CRS-NIZK	has	proof	size	O(𝜆 C ).	

NIZK	with	|𝜋| independent	of	circuit	𝐶 computing	the	
NP	relation	is	only	known	from	strong	assumptions:	

(*)iO,	FHE,	knowledge	assumptions,	compact	HomSig.

Without	(*):

Motivation

• Shortest	know is	CRS-NIZK	of	[Gro10@AC]	based	on	
Naccache-Stern	PKE	has	proof	size	polylog(𝜆) C .	



• DV-NIZK	from	CDH	has	proof	size	poly(𝜆, |C|).
• Famous	GOS	CRS-NIZK	has	proof	size	O(𝜆 C ).	

NIZK	with	|𝜋| independent	of	circuit	𝐶 computing	the	
NP	relation	is	only	known	from	strong	assumptions:	

(*)iO,	FHE,	knowledge	assumptions,	compact	HomSig.

Without	(*):

• Shortest	know is	CRS-NIZK	of	[Gro10@AC]	based	on	
Naccache-Stern	PKE	has	proof	size	polylog(𝜆) C .	

Multiplicative overhead	in	|𝐂|…

Motivation



• DV-NIZK	from	CDH	has	proof	size	poly(𝜆, |C|).
• Famous	GOS	CRS-NIZK	has	proof	size	O(𝜆 C ).	

NIZK	with	|𝜋| independent	of	circuit	𝐶 computing	the	
NP	relation	is	only	known	from	strong	assumptions:	

(*)iO,	FHE,	knowledge	assumptions,	compact	HomSig.

Without	(*):

Multiplicative overhead	in	|𝐂|…

Motivation

This	Work
(DP,	PP)-NIZKs	based	on	falsifiable	

pairing/paring-free	group	assumptions
with	proof	size 𝐂 +poly(𝝀).	

• Shortest	know is	CRS-NIZK	of	[Gro10@AC]	based	on	
Naccache-Stern	PKE	has	proof	size	polylog(𝜆) C .	



Recap:	(DP,	PP)-NIZKs

Prover Verifier(x,	w)

𝜋
x

Designated-Prover NIZKs

Proving	Key	k3

*Opposite	to	DV-NIZKs



Recap:	(DP,	PP)-NIZKs

Prover Verifier(x,	w)

𝜋
x

PreProcessing NIZKs

Proving	Key	k3

*Relaxation	of	DP	and	DV-NIZKs

Verifying	Key	k4



Recap:	(DP,	PP)-NIZKs

Prover Verifier(x,	w)

𝜋
x

PreProcessing NIZKs

Proving	Key	k3 Verifying	Key	k4

n Result	of	[KimWu18@Crypto]
Any	context-hiding	homomorphic	signatures/MACs	
(HomSig/MAC)	can	be	converted	into	DP/PP-NIZKs.



HomSig/MAC	in	a	Nutshell
(Public)
Evaluator

Signs	on	many	messages
𝐰 = (w8,… ,w:)

Signer

{(w<, σ<)}<∈[:]	

(C(𝐰), σC)

“Evaluated”	Signature	on	
message	C(𝐰)

{(w<, σ<)}<∈[:]	

Cirucit C



HomSig/MAC	in	a	Nutshell
(Public)
Evaluator

Signs	on	many	messages
𝐰 = (w8,… ,w:)

Signer

{(w<, σ<)}<∈[:]	

For	soundness.
Ø Unforgeability

Ø Context-Hiding:	Evaluated	signature C 𝐰 , σC leaks	
no	information	of	the	original	message	𝐰.

{(w<, σ<)}<∈[:]	

Cirucit C

For	zero-knowledge.

(C(𝐰), σC)

“Evaluated”	Signature	on	
message	C(𝐰)



For	soundness.
Ø Unforgeability

Ø Context-Hiding:	Evaluated	signature C 𝐰 , σC leaks	
no	information	of	the	original	message	𝐰.

For	zero-knowledge.

(C(𝐰), σC)

“Evaluated”	Signature	on	
message	C(𝐰)

HomSig/MAC	in	a	Nutshell
(Public)
Evaluator

Signs	on	many	messages
𝐰 = (w8,… ,w:)

Signer

{(w<, σ<)}<∈[:]	

For	soundness.{(w<, σ<)}<∈[:]	

Cirucit C

If	 𝜎E =poly(𝜆)	for	∀C ∈ 𝐍𝐂𝟏,	
then	 𝜋 = C +poly(𝜆) by	
[KimWu18].	



Result	1:	New	HomSig (=>DP-NIZK)

Compact HomSig for	𝐍𝐂𝟏 based	on	a	non-
static	Diffie-Hellman	type assumption.

Core	Idea:	
n View	the	simulator used	in	certain	Key-Policy	ABE	

security	proofs	as HomSigs.

n Construct	Key-Policy	ABE	with	constant-sized	secret-
keys from	non-static	DH	type	assumptions	building	on	
[RW13,	AC16,	AC17].



High	Level	Overview	of	Result	1
Proof	of	selective	security of	an	ABE	scheme…	

AdversaryABE	Simulator	S x∗
Target	

attribute

(=	Adversary	for	some	
hard	problem	)



High	Level	Overview	of	Result	1
Proof	of	selective	security of	an	ABE	scheme…	

AdversaryABE	Simulator	S x∗
Target	

attribute

(=	Adversary	for	some	
hard	problem	)

Generate	sim.	trapdoor	
𝐭𝐝𝐱∗ along	with	pp.

pp



High	Level	Overview	of	Result	1
Proof	of	selective	security of	an	ABE	scheme…	

AdversaryABE	Simulator	S x∗
Target	

attribute

(=	Adversary	for	some	
hard	problem	)

Generate	sim.	trapdoor	
𝐭𝐝𝐱∗ along	with	pp.

pp

C s.t. C x∗ = 0
Secret	key	queryUse	tdQ∗ to	simulate	

secret	key	𝐬𝐤𝐂 skC



AdversaryABE	Simulator	S x∗
Target	

attribute

(=	Adversary	for	some	
hard	problem	)

Generate	sim.	trapdoor	
𝐭𝐝𝐱∗ along	with	pp.

pp

C s.t. C x∗ = 0
Secret	key	queryUse	tdQ∗ to	simulate	

secret	key	𝐬𝐤𝐂 skC

View	tdQ∗ as	a	
“signature”	for	msg	x∗.

High	Level	Overview	of	Result	1
Proof	of	selective	security of	an	ABE	scheme…	



AdversaryABE	Simulator	S x∗
Target	

attribute

(=	Adversary	for	some	
hard	problem	)

Generate	sim.	trapdoor	
𝐭𝐝𝐱∗ along	with	pp.

pp

C s.t. C x∗ = 0
Secret	key	queryUse	tdQ∗ to	simulate	

secret	key	𝐬𝐤𝐂 skC

View	tdQ∗ as	a	
“signature”	for	msg	x∗.

View	this	process	as	
“evaluating”		tdQ∗ on	

circuit	C.	Then,	skC is	the	
“evaluated	signature”	for	

message	C(x∗)=0.

High	Level	Overview	of	Result	1
Proof	of	selective	security of	an	ABE	scheme…	



Compact	HomMAC for arithmetic	circuits	of	
poly.	bounded	degree		based	on	DDH.

Core	Idea:	
n Transform	the	non-context-hiding HomMAC by	

[CatFio18@JoC]	into	a	context-hiding	HomMAC using	
(extractable)	FE	for	inner	prodoucts (IPFE).

n Instantiate	with	DDH-based	(extractable)	IPFE by	
[AgrLibSte16@Crypto]

Result	2:	New	HomMAC (=>PP-NIZK)

*	Since	we	need	the	“extractable”	feature,	the	LWE-based	IPFE	of	[AgrLibSte16]	
cannot	be	used.

*Includes	𝐍𝐂𝟏!!



High	Level	Overview	of	Result	2
Non-context-hiding HomMAC by	[CatFio18]

n Sign(sk,	𝑤V ∈ ℤX):

sk =	(𝑠, 𝒓) ← ℤX\]8n KeyGen():

𝜎V such	that	𝑟V = 𝑤V + 𝜎V𝑠



High	Level	Overview	of	Result	2
Non-context-hiding HomMAC by	[CatFio18]

n Sign(sk,	𝑤V ∈ ℤX): 𝜎V such	that	𝑟V = 𝑤V + 𝜎V𝑠

n SigEval(poly.	𝑓 s.t. deg(𝑓)= 𝐷,	{(𝑤V, 𝜎V)}V∈[\]):

*Can	be	computed	w/o	knowledge	of	𝑠, 𝒓!!

sk =	(𝑠, 𝒓) ← ℤX\]8n KeyGen():

𝜎a = 𝑐8, … , 𝑐c ∈ ℤXc]8 s.t. 𝑓 𝒓 = 𝑓 𝒘 + ∑ 𝑐f𝑠fc
fg8



High	Level	Overview	of	Result	2
Non-context-hiding HomMAC by	[CatFio18]

n Sign(sk,	𝑤V ∈ ℤX):

n SigEval(poly.	𝑓 s.t. deg(𝑓)= 𝐷,	{(𝑤V, 𝜎V)}V∈[\]):

*Can	be	computed	w/o	knowledge	of	𝑠, 𝒓!!
n VerifyEvaled(sk, 𝑓, (𝑧, 𝜎a)):

Compute	𝑓(𝒓) and	check	if	𝑓 𝒓 = 𝑧 + ∑ 𝑐f𝑠fc
fg8

sk =	(𝑠, 𝒓) ← ℤX\]8n KeyGen():

𝜎V such	that	𝑟V = 𝑤V + 𝜎V𝑠

𝜎a = 𝑐8, … , 𝑐c ∈ ℤXc]8 s.t. 𝑓 𝒓 = 𝑓 𝒘 + ∑ 𝑐f𝑠fc
fg8



High	Level	Overview	of	Result	2
Non-context-hiding HomMAC by	[CatFio18]

n Sign(sk,	𝑤V ∈ ℤX):

n SigEval(poly.	𝑓 s.t. deg(𝑓)= 𝐷,	{(𝑤V, 𝜎V)}V∈[\]):

*Can	be	computed	w/o	knowledge	of	𝑠, 𝒓!!
n VerifyEvaled(sk, 𝑓, (𝑧, 𝜎a)):

Compute	𝑓(𝒓) and	check	if	𝑓 𝒓 = 𝑧 + ∑ 𝑐f𝑠fc
fg8

sk =	(𝑠, 𝒓) ← ℤX\]8n KeyGen():

𝜎V such	that	𝑟V = 𝑤V + 𝜎V𝑠

𝜎a = 𝑐8, … , 𝑐c ∈ ℤXc]8 s.t. 𝑓 𝒓 = 𝑓 𝒘 + ∑ 𝑐f𝑠fc
fg8

Not	context-hiding	since	𝜎a = 𝑐8, … , 𝑐c may	
leak	information	of	the	original	msg.	𝒘!



High	Level	Overview	of	Result	2
Main	Observation
n VerifyEvaled(sk, 𝑓, (𝑧, 𝜎a)):

Verification	does	not need	to	know	𝜎a = 𝑐8, … , 𝑐c ,	but	
only	the	value	of	∑ 𝑐f𝑠fc

fg8 !!

Compute	𝑓(𝒓) and	check	if	𝑓 𝒓 = 𝑧 + ∑ 𝑐f𝑠fc
fg8



High	Level	Overview	of	Result	2
Main	Observation
n VerifyEvaled(sk, 𝑓, (𝑧, 𝜎a)):

Verification	does	not need	to	know	𝜎a = 𝑐8, … , 𝑐c ,	but	
only	the	value	of	∑ 𝑐f𝑠fc

fg8 !!

Use	FE	for	inner	products!
①Modify	SigEval to	output	an	encryption:

ct ← IPFE. Enc(mpk, (𝑐8, … , 𝑐c))
②Include	skq3 ← IPFE. KeyGen(msk, (𝑠, … , 𝑠c))

in	secret	key	and	change	VerifyEvaled to	check:
𝑓 𝒓 = 𝑧 + IPFE. Dec(skq3, ct)

?

Compute	𝑓(𝒓) and	check	if	𝑓 𝒓 = 𝑧 + ∑ 𝑐f𝑠fc
fg8



Questions??


