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Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are
actually easier to build than standard NIZK

2) A (DV)NIZK for NP assuming LWE and the existence of a
(DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of
[RSS19] which required a NIZK for BDD.
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Instantiating The RHidden-Bit Model

Cryptographic primitive
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Prover’s task, given the CRS:

1.Produce a string which is indistinguishable from random
2.Be able to provably ‘open’ positions of this pseudorandom string
3. The openings should not reveal the non-opened positions
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Prove(&®, i) = 7T{Theith bit of vPRG(& ) using the seed in @ is & }

Verify( IEI ,7T,[&)) =yes / no
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Relaxing VPRGs

e ver s thes VPRGE

2. For every possible [8], there is a unique associated BOEEDED
3’. Proofs of opening to bits inconsistent with QQEIDASIA are hard to find

4.[S¥]is short

CRS C
VPRG —
5, | 0BG

XORed with the CRS, then A IEI Ay -.'
used as the hidden bit string % s E ; S ; {ﬂl}lES

e

\ 4 L 4

Proof ldea:
» C is‘close to a bad string’if 3 [§, Ext([¥)& C is bad
 Proof accepted iff inconsistent opening OR the CRS is «
close to a bad string » (requires (2))
» Inconsistent opening ==p contradiction to VPRG (3’)
» Since [§] is short, few CRS are close to a bad string.

Hidden-bit model NIZK
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g Twin DDH Check A
. . a.k.a
Adding ependenues | Cramer Shoup proof |
& m
. random
1 :
s; = hc(hf, ... hY) ;
g° + f -
h; . fi
h | I
sk = he(hS, .. h); |
hy : fe

* Malicious Hiding: even against adversarial pk, proof m; hides sjfori # j
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& ™
) random
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9> + f |
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h | Jj
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* Malicious Hiding: even against adversarial pk, proof m; hides sjfori # j
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Some random h;
unique to s;

Adding dependencies

—
& m
: random
1 :
S _I_ S1 = hC(hf, hjs)] 75,;, 20
g .
h, h,
hj _ him
S = hC(hfr, h]S/) T, = fr, ey h]S/
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) needs all the elements h?, ... h; to recover s
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Some random h;
unique to s;

Adding dependencies

'_?}‘
£ .
: random
1 :
S _I_ S1 = hC(hf, hjs)] %, —=u
g .
T, = fr, cee hSI

J

[ No h; in any m; w.h.p ]
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Our result

crs \
T g7y, \Verifier
pk \. kV
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&
L
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Y

random*
h’l :
- sy = he(h§, .. h)
h;
h; :
sk = he(hS, .. hS):
h, '

Theorem: MDV-PRG under One-More CDH

Corollary: MDV-NIZK from One-More CDH
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Our Result

1. DV-NIZK from the CDH assumption (with
“long” proof size).

2. DP-NIZK from non-static DH-type assumption
over pairing groups with “short” proof size.

3. PP-NIZK from the DDH assumption with
“short” proof size.
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2. DP-NIZK from non-static DH-type assumption
over pairing groups with “short” proof size.

3. PP-NIZK from the DDH assumption with

short” proof size. This Talk
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Motivation

NIZK with .
NP relatio _@ This Work

(*)iO, FF (DP, PP)-NIZKs based on falsifiable
pairing/paring-free group assumptions
Without with proof size |C| +poly(A).

d DV-NIEI\ 11T Vil wi’il 1 1uUJ rIIVVI o | = VUIY\IL,IUI}-

e Famous GOS CRS-NIZK has proof size O(A|C|).

 Shortest know is CRS-NIZK of [Gro10@AC] based on
Naccache-Stern PKE has proof size polylog(A1)|C]|.

‘ Multiplicative overhead in |C]|...




Recap: (DP, PP)-NIZKs

Designated-Prover NIZKs

Prover (X, w) Verifier X
2D >
(@)
\g (,L\‘ -
\J; \J‘\ - ) t/" / T,

Proving Key kp

*Opposite to DV-NIZKs
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PreProcessing NIZKs

Prover (X w) Verifier X
\ =
L
ST ) /(\, jj) —~
Proving Key kp Verifying Key ky

*Relaxation of DP and DV-NIZKs



Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

Prover (X, w) Verifier X
2D >
/ff’g—‘ ') 4 ~
~) ~"\g) W
Proving Key kp Verifying Key ky

B Result of [KIiMWul8@Crypto]

Any context-hiding homomorphic signatures/MACs
(HomSig/MAC) can be converted into DP/PP-NIZKs.
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HomSig/MAC in a Nutshell

Signer (Public)
o o Evaluator ‘k
Clru_CItC> “Evaluated” Signature on
0%, 0i) Yie[k) message C(w)
Signs on many message (C(xar) ~ )
W= (Wy, oo, Wi) If |6 |=poly(A) for VC € NC1,
» {(wy, Gi)}ie[k] —
then || = |C| +poly(A) by
[KimWu1l8].

» Unforgeability -~

» Context-Hiding: Evaluated signature (C(w), o) leaks
no information of the original message w.

™ For zero-knowledge.



Result 1: New HomSig (=>DP-NIZK)

Compact HomSig for NC! based on a non-
static Diffie-Hellman type assumption.

Core ldea:

B View the simulator used in certain Key-Policy ABE
security proofs as HomSigs.

B Construct Key-Policy ABE with constant-sized secret-
keys from non-static DH type assumptions building on
[RW13, AC16, AC17].
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High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S <t Adversary @
(= Adversary for some @ ——————
hard problem@ Target View td.+ as a3
attributg *

“signature” for msg x™.

Generate sim. trapdoor
td.+ along with pp. _ ,
. 5 PP View this process as

“evaluating” tdy- on
circuit C. Then, sk is the

“evaluated signature” for
message C(x™)=0.



Result 2: New HomMAC (=>PP-NIZK)

Compact HomMAC for arithmetic circuits of
poly. bounded degree based on DDH.

*Includes NC11!1

Core ldea:

B Transform the non-context-hiding HomMAC by
[CatFiol8@JoC] into a context-hiding HomMAC using
(extractable) FE for inner prodoucts (IPFE).

B |nstantiate with DDH-based (extractable) IPFE by
[AgrLibStel6@Crypto]

* Since we need the “extractable” feature, the LWE-based IPFE of [AgrLibSte16]
cannot be used.
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Non-context-hiding HomMAC by [CatFio18]
B KeyGen(): sk=(s,1) « Zg*!

W Sign(sk, w; € Z,): o0; such thatr; = w; + 0;s

W SigEval(poly. f s.t. deg(f)= D, {(W;, 6;)}ie[]
o = (¢q, ..., cp) €Ly st f(1r) = f(w) +Z] 1 CjS

*Can be computed w/o knowledge of s, !!

B VerifyEvaled(sk, f, (z, or)):
Compute f(r) and checkif f(r) = z + Zl?:l cjsj

@4) Not context-hiding since or = (cy, ..., Cp) may

V'Y

leak information of the original msg. w!
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High Level Overview of Result 2

Main Observation

B VerifyEvaled(sk, f, (z, af)):

Compute f(r) and checkif f(r) =z ? | C]S]
Verification does not need to know o = (¢, ..., Cp), but
only the value of Z] L cistl!

Use FE for inner products!

@ Modify SigEval to output an encryption:
ct « IPFE. Enc(mpk, (¢4, ..., ¢p))
(2 Include skyp « IPFE. KeyGen(msk, (s, ..., s2))
in secret key and change VerifyEvaled to check.
f(r) = z + IPFE. Dec(sk;p, ct)
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