Designated-Verifier Pseudorandom
Generators, and their Applications

ST

Geoffroy Couteau,

Dennis Hofheinz

Reusable Designated-Verifier NIZKs for all NP

Willy Quach,

R0on

from CDH
D). Rothblum, and

Daniel Wichs

Designated Verifier/Prover and Preprocessing
NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata,

Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa

1/19

/Zero-Knowledge Proof

e _® =

\ 4

\ 4

orover P veritier V

 Complete: it P knows a solution, V accepts
 Sound: if there is no solution, P cannot convince V
* /ero-Knowledge: V does not learn the solution

2/19

Non-Interactive Zero-
Knowledge Proof

e © =

\ 4

\ 4

orover P veritier V

 Complete: it P knows a solution, V accepts
 Sound: if there is no solution, P cannot convince V
* /ero-Knowledge: V does not learn the solution

3/19

Designated-Veritier NIZK

% B

JA.
SAS

\ 4

orover P veritier V

 Complete: it P knows a solution, V accepts
 Sound: if there is no solution, P cannot convince V
* /ero-Knowledge: V does not learn the solution

4/19

Designated-Veritier NIZK

% B

JA.
SAS

\ 4

prover P verifier V. 8@

 Complete: it P knows a solution, V accepts
 Sound: if there is no solution, P cannot convince V
* /ero-Knowledge: V does not learn the solution

4/19

Designated-Veritier NIZK

prover P verifier V. 8@

 Complete: it P knows a solution, V accepts
e Unbounded Soundness: if there is no solution, P cannot convince V
* /ero-Knowledge: V does not learn the solution

5/19

Brief History of (DV)NIZKs

NIZK from TDP

|
|
|
: [FLS90], first NIZK from a generic
|
|
|

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating
correlation intractable hash functions (iO, exponentially-strong KDM security,
circular FHE)

ZKP

[GMR85], seminal paper
on zero-knowledge proofs

NIZK

[Ore87], [GMR88], impossibility of
NIZK in the plain model + seminal
paper on NIZKs with CRS, NIZK

from quadratic residuosity

assumption, introduces the hidden-bit model

NIZK from pairings

[CHKO3], inefficient construction

|

: [RR19]: NIZK from LWE + NIZK for BDD
|

1 [GOS06b,GOS06a,GS08] & follow-ups,

|

|

|

|

[PS19]: NIZK from LWE (!)
efficient pairing-based NIZKs.

'NIZK from VPRG

[DNOOQ], first NIZK from a necessary and
sufficient assumption

o0—0——0—0—0——-0———

1985 81-88 1990 2000 2003 2016-2018 2019

6 /28

Brief History of (DV)NIZKs

NIZK from TDP

I
I
I
: [FLS90], first NIZK from a generic
I
I
I

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating
correlation intractable hash functions (iO, exponentially-strong KDM security,
circular FHE)

ZKP

[GMR85], seminal paper
on zero-knowledge proofs

NIZK

[Ore87], [GMR88], impossibility of
NIZK in the plain model + seminal
paper on NIZKs with CRS, NIZK

from quadratic residuosity

assumption, introduces the hidden-bit model

NIZK from pairings

[CHKO3], inefficient construction

|

: [RR19]: NIZK from LWE + NIZK for BDD
|

1 [GOS06b,GOS06a,GS08] & follow-ups,

|

|

|

|

[PS19]: NIZK from LWE (!)
efficient pairing-based NIZKs.

'NIZK from VPRG

[DNOOQ], first NIZK from a necessary and
sufficient assumption

@ @ @ @ @ @
1985 8788 1990\ 2000 2003 20162018 2019

(DV,DP...)-NIZK with
Unbounded soundness

[CC18]: DVNIZK from homomorphic encryption
[KW18]: DPNIZK from LWE
[BCGI18]: preprocessing NIZK from LPN

Preprocessing NIZK

[DMP9O0]: preprocessing NIZK from

|
|
|
|
|
|
|
|
|
|
|
|
: OWF

DVNIZK

[PsV06], [DFMO06], DVNIZK from :
public-key encryption & efficient NIZK ,
from homomaorphic encryption |
|
|
|

This Work

6 /28

Brief History of (DV)NIZKs

NIZK from TDP

|
|
|
: [FLS90], first NIZK from a generic
|
|
|

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating
correlation intractable hash functions (iO, exponentially-strong KDM security,
circular FHE)

ZKP

[GMR85], seminal paper
on zero-knowledge proofs

NIZK

[Ore87], [GMR88], impossibility of
NIZK in the plain model + seminal
paper on NIZKs with CRS, NIZK

from quadratic residuosity |

'NIZK from VPRG

|
: [DNOOQ], first NIZK from a necessary and
, sufficient assumption
|
|

assumption, introduces the hidden-bit model

NIZK from pairings

[CHKO3], inefficient construction

|

: [RR19]: NIZK from LWE + NIZK for BDD
|

1 [GOS06b,GOS06a,GS08] & follow-ups,

|

|

|

|

[PS19]: NIZK from LWE (!)
efficient pairing-based NIZKs.

@ @ @ @ @ @
1985 8788 1990\ 2000 2003 20162018 2019

(DV,DP...)-NIZK with
Unbounded soundness

[CC18]: DVNIZK from homomorphic encryption
[KW18]: DPNIZK from LWE
[BCGI18]: preprocessing NIZK from LPN

Preprocessing NIZK

[DMP9O0]: preprocessing NIZK from
OWF

DVNIZK

[PsV06], [DFMO06],
public-key encryptiopZ & efficient NIZK

VNIZK from |

|

from homomorphi encryption |
|

|

|

This Work

Bounded soundness

6 /28

Brief History of (DV)NIZKs

ZKP

[GMR85], seminal paper
on zero-knowledge proofs

NIZK

[Ore87], [GMR88], impossibility of
NIZK in the plain model + seminal
paper on NIZKs with CRS, NIZK

from quadratic residuosity |

'NIZK from VPRG

l
: [DNOOQ], first NIZK from a necessary and
, sufficient assumption
|
|

NIZK from TDP

|
|
|
: [FLS90], first NIZK from a generic
|
|
|

NIZK from new assumptions

[CCR16], [KRR17], [CCRR18], [HL18], [CCH+18], [CLW18]: instantiating
correlation intractable hash functions (iO, exponentially-strong KDM security,
circular FHE)

assumption, introduces the hidden-bit model

NIZK from pairings

[CHKO3], inefficient construction

|

: [RR19]: NIZK from LWE + NIZK for BDD
|

1 [GOS06b,GOS06a,GS08] & follow-ups,

|

|

|

|

[PS19]: NIZK from LWE (!)
efficient pairing-based NIZKs.

@ @ @ @ @ @
1985 8788 1990\ 2000 2003 20162018 2019

OV.DP...)-NIZJs

' Preprocessing NIZK 2 ~unded

I [DMP90]: preprocessing NIZK from _.(

: OWF - ",' fr
DVNIZK): Fecir g

[PsV06], [DFMO06],
public-key encryptiopZ & efficient NIZK

PVNIZK from |

|

from homomorphi encryption |
I

|

|

Bounded soundness

Ihis Work

6/28 X S

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are
actually easier to build than standard NIZK

2) A (DV)NIZK for NP assuming LWE and the existence of a
(DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of
[RSS19] which required a NIZK for BDD.

7/19

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are

actually easier to build than standard NIZK

2) A (DV)NIZK for NP assuming LWE and the existence of a

(DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of

[RSS19] which required a NIZK for BDD.\

7/19

But subsum@

by [PS19] ;)

[DNOO]:

Roadmap

Verifiable Pseudorandom Generator | +

8/19

NIZK in the hidden-bit model

— > NIZK

[DNOO]:

Roadmap

Verifiable Pseudorandom Generator | +

N

Verifiable Pseudorandom Generator:

- Relaxed soundness
- Generalization to the DV setting

8/19

NIZK in the hidden-bit model

— > NIZK

[DNOO]:

Roadmap

Verifiable Pseudorandom Generator | +

N

Verifiable Pseudorandom Generator: |+
- Relaxed soundness

- Generalization to the DV setting

8/19

NIZK in the hidden-bit model

NIZK in the hidden-bit model

— > NIZK

[DNOO]:

Roadmap

Verifiable Pseudorandom Generator | +

N

Verifiable Pseudorandom Generator: |+
- Relaxed soundness

- Generalization to the DV setting

Relaxed DVPRG
from CDH

8/19

NIZK in the hidden-bit model

NIZK in the hidden-bit model

— > NIZK

[DNOO]:

Roadmap

Verifiable Pseudorandom Generator | +

N

Verifiable Pseudorandom Generator: |+
- Relaxed soundness

- Generalization to the DV setting

Relaxed DVPRG
from CDH

8/19

NIZK in the hidden-bit model

NIZK in the hidden-bit model

— > NIZK

The Hidden-Bit Model

©

(N\ N [)
\ /- J

J

(" \ N\ ()
AN AN _/

\

=
L4
&
oL
v

The Hidden-Bit Model

=

N\ (\ (

JA
2
v

10/19

The Hidden-Bit Model

©

(N\ N [)
\ /- J

J

(" \ N\ ()
AN AN _/

\

=
L4
&
oL
v

The Hidden-Bit Model

The Hidden-Bit Model

=

\ 4

(N\ N\ ([N\ ([\ \ N\ ([)
J J AN /O _J

JA
2
v

The Hidden-Bit Model

=

N (N [N\ (\ N\ (N\ ([
J /

- AN J

JA
A

\ 4

NS

©

[FLS90]: NIZKs for NP exist unconditionally in the HBM

13/19

Instantiating The RHidden-Bit Model

Cryptographic primitive

=
v
W[@[N[N{a%N

AR
e
v

2 =3
A~/ v

© M)

Prover’s task, given the CRS:

1.Produce a string which is indistinguishable from random
2.Be able to provably ‘open’ positions of this pseudorandom string
3. The openings should not reveal the non-opened positions

14/19

Verifiable Pseudorandom Generators

VPRG(&) = (DGR, [S]

Prove(&®, i) = 7T{Theith bit of vPRG(&) using the seed in @ is & }

Verify(IEI ,7T,[&)) =yes / no

15/19

Verifiable Pseudorandom Generators

VPRG(&) = (DGR, [S]

Prove(&®, i) = 7T{Theith bit of vPRG(&) using the seed in @ is & }

Verify(IEI ,7T,[&)) =yes / no

» & Is short
 The proof leaks nothing more about &
* The proof is sound in a strong sense

15/19

Verifiable Pseudorandom Generators

VPRG(&) = (DGR, [S]

Prove(&®, i) = 7T{Theith bit of vPRG(&) using the seed in @ is & }

Verify(IEI ,7T,[&)) =yes / no

» & Is short
 The proof leaks nothing more about &
» The proof is sound in a strong sense

16/19

Verifiable Pseudorandom Generators

VPRG(&) = (DGR, [S]

PFOVG(’, i) — ﬂ'{ The i’'th bit of VPRG(&) using the seed in [§] is @}

Verify(|§|, 1, 77,[d)) =yes /no

» & ls short
» The proof leaks nothing more about &
» The proof is sound in a strong sense

1. Every [§] is in the image of VPRG(.)
2. For every possible [8¥], there is a unique associated BYEEDED
3. Proofs of opening to bits inconsistent with [&JQQQINDE do not exist

16/19

Relaxing VPRGs

1. Every [is in the image of VPRG(.)
2. For every possible [$], there is a unique associated BOEEDED
3. Proofs of opening to bits inconsistent with QAN do not exist

17/19

Relaxing VPRGs

e verr s thes VRRGE

2. For every possible [$], there is a unique associated BOEEDED
3. Proofs of opening to bits inconsistent with QAN do not exist

17/19

Relaxing VPRGs

Everr Bhisimthe VRRGE

- s a uni - NEENE
2. For every possible [§¥], there is a unique associated & |
3’. Proofs o¥ oppening to bits inconsistent with QOIS are hard to find

18/19

Relaxing VPRGs

e ver s thes VPRGE

2. For every possible [8], there is a unique associated BOEEDED
3’. Proofs of opening to bits inconsistent with QQEIDASIA are hard to find
4.[S¥]is short

19/19

Relaxing VPRGs

- Fis-irthe- PRGE
2. For every possible [8], there is a unique associated BOEEDED
3’. Proofs of opening to bits inconsistent with QWQQIDIE are hard to find

4.[S¥]is short

S S
D@D GGG

ElsE,S,{”i}ieS '@:@'

\ 4

VPRG Hidden-bit model NIZK

XORed with the CRS, then
used as the hidden bit string

o
v

19/19

Relaxing VPRGs

e ver s thes VPRGE

2. For every possible [8], there is a unique associated BOEEDED
3’. Proofs of opening to bits inconsistent with QQEIDASIA are hard to find

4.[S¥]is short

CRS C
VPRG —
5, | 0BG

XORed with the CRS, then A IEI Ay -.'
used as the hidden bit string % s E ; S ; {ﬂl}lES

e

\ 4 L 4

Proof ldea:
» C is‘close to a bad string’if 3 [§, Ext([¥)& C is bad
 Proof accepted iff inconsistent opening OR the CRS is «
close to a bad string » (requires (2))
» Inconsistent opening ==p contradiction to VPRG (3’)
» Since [§] is short, few CRS are close to a bad string.

Hidden-bit model NIZK

19/19

Main Instantiation: DVPRG from CDH

b .. . : ab
CDH over a group (3 states that given random g, 2%, 27 itis hard to find g

20/19

Main Instantiation: DVPRG from CDH

CDH over a group (3 states that given random g, g9, gb, it is hard to find g“b

[CKSO08], gap twin-CDH: given random §, g, gb, g° itis hard to find g“b, g

even given an oracle for the twin-DDH problem
CDH &) gap twin-CDH using some secret ‘twin-DDH checking key’

20/19

Main Instantiation: DVPRG from CDH

CDH over a group (3 states that given random g, g9, gb, it is hard to find gab

[CKSO08], gap twin-CDH: given random §, g, gb, g¢ itis hard to find g“b, g
even given an oracle for the twin-DDH problem

CDH &) gap twin-CDH using some secret ‘twin-DDH checking key’

[GL89]: explicit predicate B(.) such that given random g, g9, gb, g€ itis hard to find B(g“b, g%)
with probability >> 1/2 even given an oracle for the twin-DDH problem

Equivalent to CDH

20/19

Main Instantiation: DVPRG from CDH

CDH over a group (3 states that given random g, g9, gb, it is hard to find gab

[CKSO08], gap twin-CDH: given random §, g, gb, g¢ itis hard to find g“b, g
even given an oracle for the twin-DDH problem

CDH &) gap twin-CDH using some secret ‘twin-DDH checking key’

[GL89]: explicit predicate B(.) such that given random g gb, g€ itis hard to find B(g“b, g%)

with probability >> 1/2 even given an oracle for the twin-[3 problem
Equivalent to CDH

20/19

Main Instantiation: DVPRG from CDH

CDH over a group (3 states that given random g, g9, gb, it is hard to find gab

[CKSO08], gap twin-CDH: given random §, g, gb, g¢ itis hard to find g“b, g
even given an oracle for the twin-DDH problem

CDH &) gap twin-CDH using some secret ‘twin-DDH checking key’

[GL89]: explicit predicate B(.) such that given random ¢ is hard to find B(g“b, g%)

with probability >> 1/2 even given an oracle for the twin-[8
Equivalent to CDH

public parameters

.

20/19

Main Instantiation: DVPRG from CDH

CDH over a group (3 states that given random g, g9, gb, it is hard to find gab

[CKSO08], gap twin-CDH: given random §, g, gb, g¢ itis hard to find g“b, g
even given an oracle for the twin-DDH problem

CDH &) gap twin-CDH using some secret ‘twin-DDH checking key’

[GL89]: explicit predicate B(.) such that given random g{g* @ is hard to find(5 (gab, g%) l

with probability >> 1/2 even given an oracle for the twin-IDH problem

Equivalent to CDH

0 - ®
O = public parameters

O = pseudorandom bit associated to Q) with respect to O

20/19

Main Instantiation: DVPRG from CDH

CDH over a group (3 states that given random g, g9, gb, it is hard to find gab

[CKSO08], gap twin-CDH: given random §, g, gb, g¢ itis hard to find g“b, g
even given an oracle for the twin-DDH problem

CDH &) gap twin-CDH using some secret ‘twin-DDH checking key’

[GL89]: explicit predicate B(.) such that given random g{g* @ is hard to find(B (gab, g%) l

with probability >> 1/2 even given an oracle for the twin-IDH problem

Equivalent to CDH

O = public parameters

O = pseudorandom bit associated to Q) with respect to O

20/19

IEI Proof: g%, g9¢
+ twin-DDH check

Part Il: Malicious
Designated-Verifier NIZKs

Reusable Designated-Verifier NIZKs
for all NP from CDH

Willy Quach Ron D. Rothblum Daniel Wichs
Northeastern Technion Northeastern

Designated-Verifier NIZK

Verifier

A,
Prover
o)

Designated-Verifier NIZK

crs

Prover %)

X, W T

Desighated Verlfler NIZK

Prover %)

X, W

Designated-Verifier NIZK

Prover %)

X, W

* Need complex setup that interacts with Verifiers

Desighated Verlfler NIZK

Verifier

Prover %)

X, W

&

* Need complex setup that interacts with Verifiers

e Simpler setup?

Desighated Verlfler NIZK

Prover %)

X, W

* Need complex setup that interacts with Verifiers

e Simpler setup?
e Setup of a NIZK?

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %)

X, W X

e Simple Trusted Setup: only puts a CRS in the sky

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %)

X, W

e Simple Trusted Setup: only puts a CRS in the sky
 (Any) Verifier picks a secret key himself

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) ﬁ -— /

X, W

e Simple Trusted Setup: only puts a CRS in the sky
* (Any) Verifier picks (pk, ki) himself

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) —_ (; _

X, W T

e Simple Trusted Setup: only puts a CRS in the sky
* (Any) Verifier picks (pk, ki) himself
* (Any) Prover uses (crs, pk) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) —_ (; _

X, W T

e Simple Trusted Setup: only puts a CRS in the sky \
* (Any) Verifier picks (pk, ki) himself
* (Any) Prover uses (crs, pk) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)

crs
Prover %) 5775:(kL @ Verifier
p 7\
- >k
X, W T X

e Simple Trusted Setup: only puts a CRS in the sky Syntax: DV-NIZK-like

* (Any) Verifier picks (pk, ki) himself
* (Any) Prover uses (crs, pk) to generate proofs

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover _<_ Verifier

X, W T X

e Simple Trusted Setup: only puts a CRS in the sky Syntax: DV-NIZK-like

* (Any) Verifier picks (pk, ki) himself
* (Any) Prover uses (crs, pk) to generate proofs
e Zero-Knowledge?

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) — —

X, W T

e Simple Trusted Setup: only puts a CRS in the sky Syntax: DV-NIZK-like

* (Any) Verifier picks pk himself
* (Any) Prover uses (crs, pk) to generate proofs
e Zero-Knowledge?

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) — -— (;'_

X, W T

e Simple Trusted Setup: only puts a CRS in the sky Syntax: DV-NIZK-like

* (Any) Verifier picks pk himself
* (Any) Prover uses (crs, pk) to generate proofs
e Zero-Knowledge against malicious verifiers

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) _<_ Verifier
?‘x
X

X, W T

e Simple Trusted Setup: only puts a CRS in the sky Syntax: DV-NIZK-like

* (Any) Verifier picks pk himself
* (Any) Prover uses (crs, pk) to generate proofs Security: NIZK-like
* Zero-Knowledge against malicious verifiers (only CRS is trusted)

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) _<_ Veritier

X, W T

~ kV
X
e Simple Trusted Setup: only puts a CRS in the sky
* (Any) Verifier picks (pk, ki) himself
* (Any) Prover uses (crs, pk) to generate proofs
» Zero-Knowledge against malicious verifiers (only CRS is trusted)

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) pk

G2\ Verifier
. -
1%

X, W T

X
* Simple Trusted Setup: only puts a CRS in the sky | syntax: DV-NIzK-like
* (Any) Verifier picks (pk, ki) himself
* (Any) Prover uses (crs, pk) to generate proofs Security: NIZK-like
* Zero-Knowledge against malicious verifiers (only CRS is trusted)

Malicious Designated-Verifier NIZK (MDV-NIZK)
—O)

Prover %) pk

X, W T

e Simple Trusted Setup: only puts a CRS in the sky
2-round Zero-Knowledge
(only CRS is trusted)

» Zero-Knowledge against malicious verifiers

Roadmap

VPRG N NIZK

Hidden Bits NIZK | + < DVPRG | mmmh | Dv-NIZK

Roadmap

VPRG N NIZK

Hidden Bits NIZK | + < DVPRG | mmmh | Dv-NIZK

MDVPRG | mmmm) | MDV-NIZK

Roadmap

+<

VPRG N NIZK

DVPRG > DV-NIZK

DVPRG ' eﬁ,@‘

Prover

DVPRG

Prover

Malicious DVPRG E

Malicious DVPRG E

S [, m

Prover 77, Verifier

X

l
L

* Non-opened bits hidden against malicious public keys

Malicious DVPRG E

S [, m

Prover 77, Verifier

X

pk <—

l
L

* Non-opened bits hidden against malicious public keys

Malicious DVPRG = Malicious DV-NIZK

MDV-PRG from DDH?

MDV-PRG from DDH?

S

MDV-PRG from DDH?

& l

r____\

I a.k.a gPii

____J

MDV-PRG from DDH?

& s

h1_>51=hf
9> +

r____\

I a.k.a gPii

____J

MDV-PRG from DDH?

& s

h1_>51=hi
9> +

r____\

I a.k.a gPii

____J

.—g
m

f1

fr
r———;'\
[i
JAkag)

g Twin DDH Check A
a.k.a
MDV-PRG from DDH? _ Cramer Shoup proof
0 T
] o m
Ny =—— s, = h] fi =—> m =1
9> +
hk_>Sk=h]S; fk _>7Tk=fle
= ——— = ———
I a.ka gPi I ak.a gl

g Twin DDH Check A
a.k.a
MDV-PRG from DDH? _ Cramer Shoup proof
—Q
& m
h1_>51=hf fl_’ﬂ1=1s
9> +
hk_>Sk=h]S; fk _>7Tk=fle
o ——— o
I a.ka gPi I ak.agf

g Twin DDH Check A
a.k.a
MDV-PRG from DDH? _ Cramer Shoup proof
—Q
& m
h1_>51=hf fl_’ﬂ1=1s
9> +
hk_>Sk=h]S; fk _>7Tk=fle

* Malicious Hiding: even against adversarial pk, proof m; hides s; for i # j

g Twin DDH Check A
a.k.a

MDV-PRG from DDH? _ Cramer Shoup proof

g m

hy ——[si=hi] | /i ——Tm=—fT

9> +

hk_>Sk=h]S; fk _>7Tk=fle

* Malicious Hiding: even against adversarial pk, proof m; hides s; for i # j

g Twin DDH Check A
a.k.a
MDV-PRG from DDH? _ Cramer Shoup proof
—Q
& m

hq —»[51 = hj

9> +

* Malicious Hiding: even against adversarial pk, proof m; hides s; for i # j

g Twin DDH Check A

MDV-PRG from DDH? Cramer Shoup procf
& ™

hq —»[51 = hj

9> +

* Malicious Hiding: even against adversarial pk, proof m; hides s; for i # j

g Twin DDH Check A

MDV-PRG from DDH? Cramer Shoup procf
& ™

hq —»[51 = hj

9> +

* Malicious Hiding: even against adversarial pk, proof m; hides s; for i # j
* Malicious Verifier can learn other bits!

g Twin DDH Check A

MDV-PRG from DDH? Cramer Shoup procf
& ™

hq —»[51 = hj

9> +

)
>
p—
~|
xt
|
©
"/

* Malicious Hiding: even against adversarial pk, proof m; hides s; for i # j
 Add random dependencies?

g Twin DDH Check A
. . a.k.a
Adding ependenues | Cramer Shoup proof |
S m
hy
9° + 3
h; fi
h I
hy : fe

* Malicious Hiding: even against adversarial pk, proof m; hides sjfori # j

g Twin DDH Check A
. . a.k.a
Adding ependenues | Cramer Shoup proof |
H m
N random
1
9° + 3
h; fi
h I
hy : fe

* Malicious Hiding: even against adversarial pk, proof m; hides sjfori # j

g Twin DDH Check A
. . a.k.a
Adding ependenues | Cramer Shoup proof |
& m
. random
1 :
s; = hc(hf, ... hY) ;
g° + f -
h; . fi
h | I
sk = he(hS, .. h); |
hy : fe

* Malicious Hiding: even against adversarial pk, proof m; hides sjfori # j

" Twin DDH Check |
: : a.k.a
Add'ﬂg depeﬂdeﬂCleS _ Cramer Shoup proof |
—K
& ™
) random
1 :
s; = he(hf, .. h?)i ; My = £, fF
9> + f |
h; . i
h | Jj
| s = he(h, h]S) T = [y o f
he : fe

* Malicious Hiding: even against adversarial pk, proof m; hides sjfori # j

Adding dependencies

&

random

1]

s; = he(h3, ...hf)g

g + =
h;

h; 5

sk = he(hS, .. h);

hy '

Adding dependencies

&

random
1 :
s; = he(h3, ... hf)]g
S :
g + -
h;
h; :
sk = he(hS, .. h);
hy

77\ needs all the elements h{, ... hi to recover s
i g 1

Some random h;
unique to s;

/[4

Adding dependencies

&

random

hy fi

| 5, = he(h, ..) : T
g + . |
; s = he(h, hj) T = [y o f
h, | fe

) needs all the elements h?, ... h; to recover s
L] 1

Some random h;
unique to s;

Adding dependencies

—
& m
: random
1 :
S _I_ S1 = hC(hf, hjs)] 75,;, 20
g .
h, h,
hj _ him
S = hC(hfr, h]S/) T, = fr, ey h]S/
hg : h2

) needs all the elements h?, ... h; to recover s
L] 1

Some random h;
unique to s;

Adding dependencies

'_?}‘
£ .
: random
1 :
S _I_ S1 = hC(hf, hjs)] %, —=u
g .
T, = fr, cee hSI

J

[No h; in any m; w.h.p]

Our result e
S

p o) \ s + §S1 = hC(hf, hjg) E m = ﬁs, I
Ccrs :
g - o |
pk t— @ Verifier h; . fi
\kv h; '
>

¥ : S = he(h, .. b)) T = £ £

Our result e
S

s r)
random* . §
hy fi
ﬁ) : s, = he(hs, .. k5 : = [fF
o C 4

N)
‘ Dk Verifier h; -
R Sk, hy | fi

¥ : S = he(h, .. b)) T = fi o

/T h'g

- AN

Theorem: MDV-PRG under One-More CDH

Our result

crs \
T g7y, \Verifier
pk \. kV
>
&
L

N

J

@%
Y

random*
h’l :
- sy = he(h§, .. h)
h;
h; :
sk = he(hS, .. hS):
h, '

Theorem: MDV-PRG under One-More CDH

Corollary: MDV-NIZK from One-More CDH

@EUROCRYPT’'19

Part3.
Designated Verifier/Prover
Preprocessing NIZKs from
Diffie-Hellman Assumptions

Shuichi Katsumata (AIST), Ryo Nishimaki (NTT),
Shota Yamada (AIST), Takashi Yamakawa (NTT).

@ AIST (O)NTT

Our Result

1. DV-NIZK from the CDH assumption (with
“long” proof size).

2. DP-NIZK from non-static DH-type assumption
over pairing groups with “short” proof size.

3. PP-NIZK from the DDH assumption with
“short” proof size.

Our Result

)) |

2. DP-NIZK from non-static DH-type assumption
over pairing groups with “short” proof size.

3. PP-NIZK from the DDH assumption with

short” proof size. This Talk

Motivation

NIZK with || independent of circuit C computing the
NP relation is only known from strong assumptions:

(*)iO, FHE, knowledge assumptions, compact HomSig.

Motivation

NIZK with || independent of circuit C computing the
NP relation is only known from strong assumptions:

(*)iO, FHE, knowledge assumptions, compact HomSig.

Without (*):
* DV-NIZK from CDH has proof size poly(A, |C|).

e Famous GOS CRS-NIZK has proof size O(A|C|).

 Shortest know is CRS-NIZK of [Gro10@AC] based on
Naccache-Stern PKE has proof size polylog(A1)|C]|.

Motivation

NIZK with || independent of circuit C computing the
NP relation is only known from strong assumptions:

(*)iO, FHE, knowledge assumptions, compact HomSig.

Without (*):
* DV-NIZK from CDH has proof size poly(A, |C|).

e Famous GOS CRS-NIZK has proof size O(A|C|).

 Shortest know is CRS-NIZK of [Gro10@AC] based on
Naccache-Stern PKE has proof size polylog(A1)|C]|.

‘ Multiplicative overhead in |C]|...

Motivation

NIZK with .
NP relatio _@ This Work

(*)iO, FF (DP, PP)-NIZKs based on falsifiable
pairing/paring-free group assumptions
Without with proof size |C| +poly(A).

d DV-NIEI\ 11T Vil wi’il 1 1uUJ rIIVVI o | = VUIY\IL,IUI}-

e Famous GOS CRS-NIZK has proof size O(A|C|).

 Shortest know is CRS-NIZK of [Gro10@AC] based on
Naccache-Stern PKE has proof size polylog(A1)|C]|.

‘ Multiplicative overhead in |C]|...

Recap: (DP, PP)-NIZKs

Designated-Prover NIZKs

Prover (X, w) Verifier X
2D >
(@)
\g (,L\‘ -
\J; \J‘\ -) t/" / T,

Proving Key kp

*Opposite to DV-NIZKs

Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

Prover (X w) Verifier X
\ =
L
ST) /(\, jj) —~
Proving Key kp Verifying Key ky

*Relaxation of DP and DV-NIZKs

Recap: (DP, PP)-NIZKs

PreProcessing NIZKs

Prover (X, w) Verifier X
2D >
/ff’g—‘ ') 4 ~
~) ~"\g) W
Proving Key kp Verifying Key ky

B Result of [KIiMWul8@Crypto]

Any context-hiding homomorphic signatures/MACs
(HomSig/MAC) can be converted into DP/PP-NIZKs.

HomSig/MAC in a Nutshell

Slgner (Public) £
& Evaluator
Cirucit C , s
— Evaluated” Signature on
{(wj, 67) }ie[k) message C(w)
Signs on many messages (C(W), O-C)

W = (Wl, ...,Wk)

» {(wi, Gi)}ie[k]

HomSig/MAC in a Nutshell

Slgner (Public) %5
& Evaluator
Cirucit C , o
— Evaluated” Signature on
{(wj, 67) }ie[k) message C(w)
Signs on many messages (C(W), GC)

W = (Wl, ...,Wk)

» {(wi, Gi)}ie[k]

For soundness.
> Unforgeability 7~

» Context-Hiding: Evaluated signature (C(w), o) leaks
no information of the original message w.

™ For zero-knowledge.

HomSig/MAC in a Nutshell

Signer (Public)
o o Evaluator ‘k
Clru_CItC> “Evaluated” Signature on
0%, 0i) Yie[k) message C(w)
Signs on many message (C(xar) ~)
W= (Wy, oo, Wi) If |6 |=poly(A) for VC € NC1,
» {(wy, Gi)}ie[k] —
then || = |C| +poly(A) by
[KimWu1l8].

» Unforgeability -~

» Context-Hiding: Evaluated signature (C(w), o) leaks
no information of the original message w.

™ For zero-knowledge.

Result 1: New HomSig (=>DP-NIZK)

Compact HomSig for NC! based on a non-
static Diffie-Hellman type assumption.

Core ldea:

B View the simulator used in certain Key-Policy ABE
security proofs as HomSigs.

B Construct Key-Policy ABE with constant-sized secret-
keys from non-static DH type assumptions building on
[RW13, AC16, AC17].

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S » Adversary @)

(= Adversary for some G —————
hard problem@ Target
attribute

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S <" Adversary @
(= Adversary for some G —————
hard problem@ Target
attribute

Generate sim. trapdoor pp

td,- along with pp.

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S <" Adversary @
(= Adversary for some G —————
hard problem@ Target
attribute

Generate sim. trapdoor pp

td,- along with pp.

Cst.C(x*) =0
Use tdy+ to simulate Gr—

Secret key query
secret key sk Sk
C

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S <t Adversary @
(= Adversary for some @ ——————
hard problem@ Target View td.+ as a3
attributg *

“signature” for msg x™.

2P

Cst.C(x*) =0
Use td,+ to simulate Gr—
t key sk
secret key sk .

Generate sim. trapdoor
td,- along with pp.

Secret key query

High Level Overview of Result 1

Proof of selective security of an ABE scheme...

ABE Simulator S <t Adversary @
(= Adversary for some @ ——————
hard problem@ Target View td.+ as a3
attributg *

“signature” for msg x™.

Generate sim. trapdoor
td.+ along with pp. _ ,
. 5 PP View this process as

“evaluating” tdy- on
circuit C. Then, sk is the

“evaluated signature” for
message C(x™)=0.

Result 2: New HomMAC (=>PP-NIZK)

Compact HomMAC for arithmetic circuits of
poly. bounded degree based on DDH.

*Includes NC11!1

Core ldea:

B Transform the non-context-hiding HomMAC by
[CatFiol8@JoC] into a context-hiding HomMAC using
(extractable) FE for inner prodoucts (IPFE).

B |nstantiate with DDH-based (extractable) IPFE by
[AgrLibStel6@Crypto]

* Since we need the “extractable” feature, the LWE-based IPFE of [AgrLibSte16]
cannot be used.

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]

B KeyGen(): sk=(s,1) « Zg*!

W Sign(sk, w; € Z,): o0; such thatr; = w; + 0;s

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]
B KeyGen(): sk=(s,1) « Zg*!

W Sign(sk, w; € Z,): o0; such thatr; = w; + 0;s

B SigEval(poly. f s.t. deg(f)= D, {(w;, 6;) }iex)
or = (Cq, .. CD)EZDHStf(T)—f(W)"‘Z] 167

*Can be computed w/o knowledge of s, !!

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]
B KeyGen(): sk=(s,1) « Zg*!

W Sign(sk, w; € Z,): o0; such thatr; = w; + 0;s

W SigEval(poly. f s.t. deg(f)= D, {(W;, 6;)}ie[]
or = (¢y,...,cp) €Ly st f(1r) = f(w) +Z] 1 CjS

*Can be computed w/o knowledge of s, !!

B VerifyEvaled(sk, f, (z, or)):
Compute f(r) and checkif f(r) = z + Z?zl cjsj

High Level Overview of Result 2

Non-context-hiding HomMAC by [CatFio18]
B KeyGen(): sk=(s,1) « Zg*!

W Sign(sk, w; € Z,): o0; such thatr; = w; + 0;s

W SigEval(poly. f s.t. deg(f)= D, {(W;, 6;)}ie[]
o = (¢q, ..., cp) €Ly st f(1r) = f(w) +Z] 1 CjS

*Can be computed w/o knowledge of s, !!

B VerifyEvaled(sk, f, (z, or)):
Compute f(r) and checkif f(r) = z + Zl?:l cjsj

@4) Not context-hiding since or = (cy, ..., Cp) may

V'Y

leak information of the original msg. w!

High Level Overview of Result 2

Main Observation

B VerifyEvaled(sk, f, (z, af)):

Compute f(r) and checkif f(r) =z ? | c]sf
Verification does not need to know o = (¢, ..., Cp), but
only the value of Z] L cistl!

High Level Overview of Result 2

Main Observation

B VerifyEvaled(sk, f, (z, af)):

Compute f(r) and checkif f(r) =z ? | C]S]
Verification does not need to know o = (¢, ..., Cp), but
only the value of Z] L cistl!

Use FE for inner products!

@ Modify SigEval to output an encryption:
ct « IPFE. Enc(mpk, (¢4, ..., ¢p))
(2 Include skyp « IPFE. KeyGen(msk, (s, ..., s2))
in secret key and change VerifyEvaled to check.
f(r) = z + IPFE. Dec(sk;p, ct)

Questions??

Designated-Verifier Pseudorandom
Generators, and their Applications

Geoffroy Couteau, Dennis Hofheinz \\‘(IT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Reusable Designated-Verifier NIZKs for all NP

from CDH
Willy Quach, Ron D. Rothblum, and Daniel Wichs

Designated Verifier/Prover and Preprocessing
NIZKs from Diffie-Hellman Assumptions

Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and

| @ A IST Takashi Yamakawa @NTT

