Towards Non-Interactive Zero-Knowledge Proofs from CDH and LWE

Geoffroy Couteau, Dennis Hofheinz

Zero-Knowledge Proof

prover P

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Non-Interactive ZeroKnowledge Proof

verifier V

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Brief History of NIZKs

Designated-Verifier NIZK

verifier V

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZK

verifier $\vee \boldsymbol{\rho}$

- Complete: if P knows a solution, V accepts
- Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZK

verifier $\vee \boldsymbol{\rho}$

- Complete: if P knows a solution, V accepts
- Unbounded Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Designated-Verifier NIZK

prover P

verifier $\vee \boldsymbol{\rho}$

- Complete: if P knows a solution, V accepts
- Unbounded Sound: if there is no solution, P cannot convince V
- Zero-Knowledge: V does not learn the solution

Brief History of (DV)NIZKs

Our Contribution

We obtain two new constructions:

1) A DVNIZK for NP under the CDH assumption

First direct indication that DVNIZK with unbounded soundness are actually easier to build than standard NIZK
2) A (DV)NIZK for NP assuming LWE and the existence of a (DV)NIWI for BDD

Improving over, and considerably simplifying, the recent result of [RR18] which required a NIZK for BDD.

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Verifiable Pseudorandom Generator:

- Relaxed soundness
- Generalization to the DV setting

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Roadmap

[DNOO]: Verifiable Pseudorandom Generator + NIZK in the hidden-bit model \Rightarrow NIZK

Roadmap

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

The Hidden-Bit Model

[FLS90]: NIZKs for NP exist unconditionally in the HBM

Instantiating The Hidden-Bit Model

Cryptographic primitive

Prover's task, given the CRS:

1. Produce a string which is indistinguishable from random
2. Be able to provably 'open' positions of this pseudorandom string 3. The openings should not reveal the non-opened positions

Pseudorandom Generators

$$
\mathrm{PRG}\left({ }^{(}\right)=\text {) }
$$

- s is short
- If is random, 준 from a truly random string

Verifiable Pseudorandom Generators

$\operatorname{VPRG}(\boldsymbol{*})=$ S S S S S S S
$\operatorname{Prove}(\boldsymbol{C})=\pi\{$ The ith bit of $\operatorname{VPRG}(\boldsymbol{\sigma})$ using the seed in is $\boldsymbol{\sim}\}$
$\operatorname{Verify}\left(\boldsymbol{B}, \mathrm{i}, \pi, \mathrm{Q}_{0}\right)=$ yes $/ \mathrm{no}$

Verifiable Pseudorandom Generators

$$
\begin{aligned}
& \operatorname{VPRG}(\boldsymbol{S})=\mathbb{S} \mathcal{S}_{\mathbb{N}} \Theta_{\mathbb{N}}, \infty \\
& \operatorname{Prove}(\boldsymbol{\sigma}, \mathrm{i})=\pi\{\text { The ith bit of } \operatorname{VPrg}(\text { using the seed in } ⿴ 囗 ⿱ 一 一 \infty \\
& \operatorname{Verify}(\Omega, i, \pi, \infty)=\text { yes } / \text { no }
\end{aligned}
$$

－Is short
－The proof leaks nothing more about δ
－The proof is sound in a strong sense

Verifiable Pseudorandom Generators

$$
\begin{aligned}
& \operatorname{VPRG}(\boldsymbol{S})=\mathbb{S} \mathcal{S}_{\mathbb{N}} \mathcal{S}_{\mathbb{N}}, \infty \\
& \operatorname{Prove}(\boldsymbol{\sigma}, \mathrm{i})=\pi\{\text { The ith bit of } \operatorname{VPrg}(\text { using the seed in } ⿴ 囗 ⿱ 一 一 \infty \\
& \operatorname{Verify}(\Omega, i, \pi, \infty)=\text { yes } / \text { no }
\end{aligned}
$$

－Is short
－The proof leaks nothing more about δ
－The proof is sound in a strong sense

Verifiable Pseudorandom Generators

$\operatorname{VPRG}(\boldsymbol{S})=\mathbb{S} \mathcal{S}_{\mathbb{N}} \Theta_{\mathbb{N}}, \infty$
 $\operatorname{Verify}(\Omega, i, \pi$,) $=$ yes $/$ no

- Is short
- The proof leaks nothing more about δ
- The proof is sound in a strong sense

1. Every B is in the image of VPRG(.)
2. For every possible \rightarrow, there is a unique associated
3. Proofs of opening to bits inconsistent with ©

Building NIZKs from VPRGs

1. Every Δ is in the image of $\operatorname{VPRG}($.
2. For every possible \triangle, there is a unique associated
3. Proofs of opening to bits inconsistent with क्र

Relaxing VPRGs

1. Every Δ is in the image of $\operatorname{VPRG}($.
2. For every possible θ, there is a unique associated
3. Proofs of opening to bits inconsistent with

Relaxing VPRGs

1. Every $S_{\text {s in the }}$
2. For every possible , there is a unique associated
3. Proofs of opening to bits inconsistent with 웅

Relaxing VPRGs

1. Every $\begin{aligned} & \text { sin in the image of VPna(.) }\end{aligned}$

2. For every possible \triangle, there is a unique associated

3'. Proofs of opening to bits inconsistent with क्र

Relaxing VPRGs

1. Every $\sqrt{\text { s }}$ is in the image of V PnG(.)

4. is short

Relaxing VPRGs

1. Every $\begin{aligned} & \text { s is in the image of } V P n G(.)\end{aligned}$

2. For every possible B, there is a unique associated

3'. Proofs of opening to bits inconsistent with क्री
4. Δ is short

Relaxing VPRGs

1. Every $\begin{aligned} & \text { s is in the image of } V P n G(.)\end{aligned}$

2. For every possible B, there is a unique associated 3'. Proofs of opening to bits inconsistent with march are hard to find 4. Δ is short

Relaxing VPRGs

1. Every ${ }^{5}$ is in the image of VPRA(.)
2. For every possible \square, there is a unique associated $\boldsymbol{\sigma}^{2}$ 团
 4. is short

How does that help?

Relaxing VPRGs

1. Every ${ }^{6}$ is in the image of VPAG(.)

3'. Proofs of opening to bits inconsistent with ©an प्र
4. is short

How does that help?

(1) allows for lattice-based VPRGs

For typical LWE-based commitments, there are many invalid commitments indistinguishable from valid ones
(3') allows for designated-verifier variants
Since accepting incorrect proofs always exist in the DV setting

Instantiation 1: DVPRG from CDH

CDH over a group \mathbb{G} states that given random g, g^{a}, g^{b}, it is hard to find $g^{a b}$

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

[CKS08], gap twin-CDH: given random g, g^{a}, g^{b}, g^{c}, it is hard to find $g^{a b}, g^{a c}$ even given an oracle for the twin-DDH problem

CDH \Leftrightarrow gap twin-CDH using some secret 'twin-DDH checking key'

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

$$
\begin{aligned}
& \text { [CKS08], gap twin-CDH: given random } g, g^{a}, g^{b}, g^{c} \text {, it is hard to find } g^{a b}, g^{a c} \\
& \text { even given an oracle for the twin-DDH problem } \\
& \quad \text { CDH } \Leftrightarrow \text { gap twin-CDH using some secret 'twin-DDH checking key' }
\end{aligned}
$$

[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a}, g^{b}, g^{c}$, it is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-DDH problem

Equivalent to CDH

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

> [CKS08], gap twin-CDH: given random g, g^{a}, g^{b}, g^{c}, it is hard to find $g^{a b}, g^{a c}$ even given an oracle for the twin-DDH problem
> \quad CDH \Leftrightarrow gap twin-CDH using some secret 'twin-DDH checking key'
[GL89]: explicit predicate $\mathrm{B}($.$\left.) such that given random g, g^{a}\right) g^{b}, g^{c}$, it is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-BDA problem

Equivalent to CDH

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

> [CKS08], gap twin-CDH: given random g, g^{a}, g^{b}, g^{c}, it is hard to find $g^{a b}, g^{a c}$ even given an oracle for the twin-DDH problem
> \quad CDH \Leftrightarrow gap twin-CDH using some secret 'twin-DDH checking key'
[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a}$ g g^{b}, g^{c}, t is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-EDA prodem

Equivalent to CDH

$0=$
 $=$ public parameters

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$


```
even given an oracle for the twin-DDH problem
    CDH }\Leftrightarrow\mathrm{ gap twin-CDH using some secret 'twin-DDH checking key'
```

[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a} g^{b}, g^{c}$, is hard to find $B\left(g^{a b}, g^{\prime}\right.$ with probability >> $1 / 2$ even given an oracle for the twin-DDA problem

Equivalent to CDH

$0=\sigma$
 = public parameters

$\square=$ pseudorandom bit associated to 0 with respect to 0

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

```
[CKS08], gap twin-CDH: given random g, g even given an oracle for the twin-DDH problem
CDH \(\Leftrightarrow\) gap twin-CDH using some secret 'twin-DDH checking key'
```

[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a} g^{b}, g^{c}$, is hard to find $B\left(g^{a b}, g^{2}\right.$ with probability >> $1 / 2$ even given an oracle for the twin-LDA proilem

Equivalent to CDH

$\square=O$ $=$ public parameters

Proof: $g^{a b}, g^{a c}$ + twin-DDH check
$=$ pseudorandom bit associated to 0 with respect to 0

Instantiation 1: DVPRG from CDH

$$
\text { CDH over a group } \mathbb{G} \text { states that given random } g, g^{a}, g^{b} \text {, it is hard to find } g^{a b}
$$

[CKS08], gap twin-CDH: given random g, g^{a}, g^{b}, g^{c}, it is hard to find $g^{a b}, g^{a c}$ even given an oracle for the twin-DDH problem

CDH \Leftrightarrow gap twin-CDH using some secret 'twin-DDH checking key'
[GL89]: explicit predicate $\mathrm{B}($.$) such that given random g, g^{a}, g^{b}, g^{c}$, it is hard to find $B\left(g^{a b}, g^{a c}\right)$ with probability >> $1 / 2$ even given an oracle for the twin-DDH problem

Equivalent to CDH

Public parameters: $\mathbb{G}, g,\left(g^{a_{1}}, g^{b_{1}}, \cdots, g^{a_{n}}, g^{b_{n}}\right)=\left(u_{1}, v_{1}, \cdots, u_{n}, v_{n}\right)$
Secret verification key: $\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $\left(K_{1}, \cdots, K_{n}\right)=\left(a_{1}+\lambda_{1} b_{1}, \cdots, a_{n}+\lambda_{n} b_{n}\right)$
DVPRG: $\boldsymbol{\delta}=r, \boldsymbol{\otimes}=g^{r}, \operatorname{DVPRG}(\boldsymbol{\otimes})=B\left(u_{1}{ }^{r}, v_{1}{ }^{r}\right), \cdots, B\left(u_{n}{ }^{r}, v_{n}{ }^{r}\right)$
Proof: $\pi=\left(u_{i}^{r}, v_{i}^{r}\right)=\left(\pi_{0}, \pi_{1}\right)$
Verification: check that $B\left(\pi_{0}, \pi_{1}\right)=b$ and $\pi_{0}^{\lambda_{i}} \pi_{1}=\left(g^{r}\right)^{K_{i}}$

Instantiation 2: VPRG from LWE+NIWI

Instantiation 2: VPRG from LWE+NIWI

$$
\operatorname{PRG}\left({ }^{\prime}\right)=\text { = }
$$

Instantiation 2: VPRG from LWE+NIWI

x

Instantiation 2: VPRG from LWE+NIWI

$$
\operatorname{PRG}\left({ }^{\prime}\right)=\text { = }
$$

Hiding x

Instantiation 2: VPRG from LWE+NIWI

Hiding x
Binding

Instantiation 2: VPRG from LWE+NIWI

Fully homomorphic

Instantiation 2: VPRG from LWE+NIWI

Instantiation 2: VPRG from LWE+NIWI

Instantiation 2: VPRG from LWE+NIWI

$$
\operatorname{PRG}(\boldsymbol{*})=\mathrm{SNS} \text { S }
$$

[^0]
Instantiation 2: VPRG from LWE+NIWI

[^1]
Instantiation 2: VPRG from LWE+NIWI

Proof of validity $=$ NIZK for BDD. Proof of opening to $=$ NIWI for BDD.


```
    4. B is short
```


Summary

We obtain two new constructions:

```
1) A DVNIZK for NP under the CDH assumption
First direct indication that DVNIZK with unbounded soundness are actually easier to build than standard NIZK
2) A (DV)NIZK for NP assuming LWE and the existence of a (DV)NIWI for BDD
Improving over, and considerably simplifying, the recent result of [RR18] which required a NIZK for BDD.
```

by relaxing [DNO0]'s VPRGs, generalizing to DVPRGs, showing that it still suffices to construct (DV)NIZKs by instantiating the hidden-bit model, and providing new (D)PRGs instantiations.

Thanks for your attention

Questions?

[^0]: 1. Every
 2. For every possible \triangle, there is a unique associated

 3'. Proofs of opening to bits inconsistent with ,
 4. B is short

[^1]: 1. Every
 2. For every possible $\mathbb{\Delta}$, there is a unique associated

 3'. Proofs of opening to bits inconsistent with ,
 4. B is short

