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Y — f(x()a fl)

o Correctness: the parties learn the correct output
* Privacy: the parties learn nothing more than the output
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Does secure computation inherently require so much communication?

Gentry (2009): MPC with optimal communication from (variants of) LWE

This work: revisiting this question for MPC with correlated randomness
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Generates and distributes correlated random coins,
independent of the inputs of the parties

Beaver (1991): this allows for -'
information-theoretically secure
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[too many papers to cite them all]
(2011 - 2018): this allows for T
concretely efficient MPC 1

All known protocols in the correlated randomness model have

communication proportional to the circuit size

DNPR16: this is inherent for
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Our Result

For any layered boolean circuit C of size s with n inputs and m outputs,
there exists an IN-party protocol which securely evaluates C' in the (function-
dependent) correlated randomness model against malicious parties, with adap-
tive security, and without honest majority, using a polynomial number of cor-

related random coins and with communication

O({n+N-[m- > .
loglog s
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there exists an IN-party protocol which securely evaluates C' in the (function-
dependent) correlated randomness model against malicious parties, with adap-
tive security, and without honest majority, using a polynomial number of cor-

related random coins and with communication
S
Oln+N-[m- .
loglog s

+ Extensions to arithmetic circuits and function-independent preprocessing

+ Concrete efficiency improvements for TinyTable

We’'ll focus on 2 parties & semi-honest security here
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fx+71r)=f((xo +70) + (21 +71))

. [IT(N-5) [[f(N-4) [[f(N-3) [[f(N-2) [[f(N-1){[ f(N) [ f(O) | f(1) {[ f(2) || f(3) [ f(4) [ f(5)

&t’s great]

communication: 2n
( that’s bad |: n
storage: m - 2" + n
IKMOP (2013): a polynomial
storage for all functions would

/ ' '
Yo < M|+ imply a breakthrough in — M’
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The Core Lemma

Let f be a c-local function, with input of size n and output of size m. Then there
exists a protocol II which securely computes shares of / in the correlated
randomness model, with optimal communication O(n) and storage m - 2° 4 n.
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Construction

Layered boolean circuit, size s, depth d, width w, n inputs and m outputs

Let f be a c-local function, with input of size n and output of size . Then there
exists a protocol II which securely computes shares of / in the correlated
randomness model, with optimal communication O(n) and storage m - 2° 4 n.

fi is a 2™local function with w inputs and outputs

We can securely compute shares of f; with communication O(w) and storage O (w - 22k)

Input sharing

v

Communication: O(w - d/k) = O(s/k)

fi

Storage: O(w - 22" . d/k)=0O(s - 22k/k)

f2

There exist a protocol to evaluate any LBC, with

polynomial storage and total communication:
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» Can we get sublinear communication and linear computation?

« Can we extend the result to all circuits?
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Thanks for your attention

Questions?

(Paper is online: ia.cr/2018/465)
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