How to Generate Correlated Randomness from (variants of) LPN
Part |

Based on joint works with: Elette Boyle, Niv Gilboa, Yuval Ishal, Lisa Kohl,
Srinivasan Raghuraman, Peter Rindal, Peter Scholl

@ 'Y

Universite
de Paris

How to Generate Correlated Randomness from (variants of) LPN
Part |

Stay tuned for part Il :)

~

Based on joint works with: Elette Boyle, Niv Gilboa, Yuval Ishal, Lisa Kohl,
Srinivasan Raghuraman, Peter Rindal, Peter Scholl

@ 'Y

Universite
de Paris

What is Secure Computation®

What is Secure Computation®

Secure communication
Goal: communicating a secret message

K

y

m

Output: Bob learns m
Security: Eve learns nothing

What is Secure Computation®

Secure communication
Goal: communicating a secret message

y

m

K

Output: Bob learns m
Security: Eve learns nothing

Secure

computation

Goal: computing a (public) function on secret inputs

X
Output: A

Security: A

f4<’9°)9fB('9°)

ice learns f4(X, V) and Bob learn fz(x, ¥)
ice and Bob learn nothing else

What is Secure Computation®

Secure communication Secure computation
Goal: communicating a secret message Goal: computing a (public) function on secret inputs
JaCos) fp(e)

y

K

Output: Bob learns m Output: Alice learns]f4(X, y) and Bob learn f B(x, y)
Security: Eve learns nothing Security: Alice and Bob learn nothing else

Y

m

* |t’s a more fine-grained approach to security: the function controls precisely what

IS learned (secure communication is all or nothing)
* |t is much more demanding: now the adversary is internal (Alice must be protected

against Bob, and Bob against Alice), and can influence the protocol!

Secure Computation from Oblivious Transfer

Oblivious Transfer
A minimal example of secure computation

* 0%

(S()9 Sl)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn s,_,.

Secure Computation from Oblivious Transfer

Oblivious Transfer
A minimal example of secure computation

* 0%

(S()9 Sl)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn s,_,.

Secure Computation for all functions

]€4(°9')afB('9°)

y

—r—

o

X Y

Output: Alice learns f4(x, V) and

Bob learns fB(X y)
Security: Alice and Bob learn nothing else

Secure Computation from Oblivious Transfer

Oblivious Transfer
A minimal example of secure computation

* 0%

(S()9 Sl)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn s,_,.

1. Use (additive) secret sharing

Secure Computation for all functions

]€4(°9°)9fB('9°)
2. . ¢

X Y

Output: Alice learns f4(x, V) and

Bob learns fB(X y)
Security: Alice and Bob learn nothing else

Secure Comp

utation from ODblivious Transfer

Oblivious Transfer
A minimal example of secure computation

* 0%

(S()9 Sl)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn s,_,.

Secure Computation for all functions

]€4(°9°)9fB('9°)

y

—r—

o

X Y

Output: Alice learns f4(x, V) and

Bob learns fB(X y)
Security: Alice and Bob learn nothing else

1. Use (additive) secret sharing

2. Write the function as a circuit

& oo & oo

& A
&

Secure Computation from Oblivious Transfer

Oblivious Transfer
A minimal example of secure computation

* 0%

(S()a Sl)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn s,_,.

Secure

y

X

Computation for all functions

]€4(°9°)9fB('9°)

—r—

o

Y

Output: Alice learns f4(x, V) and

Bob learns f B(X y)

Security: Alice and Bob learn nothing else

1. Use (additive) secret sharing

2. Write the function as a circuit

& oo & oo

& A
&

3. Use OT to compute the gates

share(x,y) = share(GATE(x, y))

I’ll skip the details for now, but feel
free to ask for them!

Secure Computation from Correlated Randomness

Suppose that, for some reason, the parties could already
obtain the result of a random oblivious transfer prior to the

protocol:
Y e (g

. | — .
&10/] o)
’ Random OT ’

(S()a Sl) b

Secure Computation from Correlated Randomness

Suppose that, for some reason, the parties could already
obtain the result of a random oblivious transfer prior to the
protocol:

+ +

NN e (@

&P’/ﬁ &

Random OT

(S()a Sl) b

Then the parties can use it to perform an arbitrary oblivious
transfer!

(Simple) protocol:

» f a=b and Bob gets (s, D ry,s; D ry), he can get
S, = §,, since he knows only r,, = r,,.

 Ifa =1 — b and Bob gets (sy D ry, 51 D ry), he again gets
S;,, since he knows only r;_,.

» Bob simply tells Alice whether a = b (leaks nothing since a
is random!), and Alice sends the appropriate pair.

Secure Computation from Correlated Randomness

Suppose that, for some reason, the parties could already Giver? many random .OTS, one can compute an arbitrary
obtain the result of a random oblivious transfer prior to the = function! The protocol is

protocol: * |Information-theoretically secure
\ * Very fast: only three bits exchanged per OT! (In practice,
UQ’YO < (Q; - this means 6 bits / AND gate, and 0 / XOR gate)
/ m Q) This Is the correlated randomness model: fast, information-
theoretically secure computation given access to a (trusted)

Random OT .
source of correlated random coins.

(S()a Sl) b

Then the parties can use it to perform an arbitrary oblivious
transfer!

(Simple) protocol:

» f a=b and Bob gets (s, D ry,s; D ry), he can get
S, = §,, since he knows only r,, = r,,.

 Ifa =1 — b and Bob gets (sy D ry, 51 D ry), he again gets
S;,, since he knows only r;_,.

» Bob simply tells Alice whether a = b (leaks nothing since a
is random!), and Alice sends the appropriate pair.

Secure Computation from Correlated Randomness

Suppose that, for some reason, the parties could already
obtain the result of a random oblivious transfer prior to the
protocol:

+ +

NN e (@

&P’/ﬁ &

Random OT

(S()a Sl) b

Then the parties can use it to perform an arbitrary oblivious
transfer!

(Simple) protocol:

» f a=b and Bob gets (s, D ry,s; D ry), he can get
S, = §,, since he knows only r,, = r,,.

 Ifa =1 — b and Bob gets (sy D ry, 51 D ry), he again gets
S;,, since he knows only r;_,.

» Bob simply tells Alice whether a = b (leaks nothing since a
is random!), and Alice sends the appropriate pair.

Given many random OTs, one can compute an arbitrary

function! The protocol is

* |Information-theoretically secure

* Very fast: only three bits exchanged per OT! (In practice,
this means 6 bits / AND gate, and 0 / XOR gate)

This i1s the correlated randomness model: fast, information-
theoretically secure computation given access to a (trusted)
source of correlated random coins.

The natural question:

Can we efficiently generate (securely) large
amounts of correlated randomness?

Perhaps the most fundamental question in
secure computation!

Secure Computation from Correlated Randomness

Suppose that, for some reason, the parties could already
obtain the result of a random oblivious transfer prior to the

protocol:
7 e (g
Nl %
Random OT

(S()a Sl) b

Then the parties can use it to perform an arbitrary oblivious
transfer!

(Simple) protocol:

» f a=b and Bob gets (s, D ry,s; D ry), he can get
S, = §,, since he knows only r,, = r,,.

 Ifa =1 — b and Bob gets (sy D ry, 51 D ry), he again gets
S;,, since he knows only r;_,.

» Bob simply tells Alice whether a = b (leaks nothing since a
is random!), and Alice sends the appropriate pair.

Given many random OTs, one can compute an arbitrary

function! The protocol is

* |Information-theoretically secure

* Very fast: only three bits exchanged per OT! (In practice,
this means 6 bits / AND gate, and 0 / XOR gate)

This i1s the correlated randomness model: fast, information-
theoretically secure computation given access to a (trusted)
source of correlated random coins.

The natural question:

Can we efficiently generate (securely) large
amounts of correlated randomness?

Perhaps the most fundamental question in
secure computation!

This talk:

Can we compress correlated randomness?

Turns out to be just the right way to ask the
previous question.

Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

(D

©

Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

One-time pad o\ »
L = QO

Correlation: R, = Ry

(Equality correlation)

©

Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + + 4+

One-time pad R GMW YA
Ry S __&, i & 4,
2 =~ QU

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp

%

(Equality correlation) (Oblivious transfer correlation)

©

Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

One-time pad N GMW N AN

‘l

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp

(Equality correlation) (Oblivious transfer correlation)

In the computational world, can we compress correlated randomness?

Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + + 4+

One-time pad R GMW YA
Ry S __&, i & 4,
2 =~ QU

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp

%

(Equality correlation) (Oblivious transfer correlation)

Equality correlations can be compressed using a PRG:

+ 4

seed 4

seedp @

R, = PRG(seed,) Ry = PRG(seedp)

Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + 4

GMW S
Sy < @,%

One-time pad o\ »
L = QO

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp
(Equality correlation) (Oblivious transfer correlation)
Equality correlations can be compressed using a PRG: Can OT correlations be compressed using a PCG?
++i+\ +
seed 4 UX

seedp seedy seedp
@ Gen(1%)

Expand(i, seed;)
R, = PRG(seed,) R, = PRG(seedp) (R, Sy) (Rg, Sp)

Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

Preprocessing phase Online phase

Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the

correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction

Gen(1%)

——

seed 4 4) \b seedj

Interactive protocol with short
communication and computation;
Alice and Bob store a small seed

afterwards.

Online phase

Preprocessing phase

Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction ‘Silent’ co.mputation

Gen(1%)

——

seed 4 4) \b seedj O

.39
o

2 W

OO

5 e

Expand(seed,) : Expand(seedp)
Interactive protocol with short The bulk of the preprocessing
communication and computation; phase is offline: Alice and Bob
Alice and Bob store a small seed stretch their seeds Iinto large
afterwards. pseudorandom correlated strings.

Preprocessing phase Online phase

Secure Computation with Silent Preprocessing

Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction ‘Silent’ computation Non-cryptographic

B Q@

Gen(1%)

——

.39
o

 e——

2 W

: o
seed d \b seed 0 I 00 4-/ \.y
A B 5 J(x,y)
Expand(seed,) : Expand(seedp)

Interactive protocol with short The bulk of the preprocessing Alice and Bob consume the
communication and computation; phase is offline: Alice and Bob preprocessing material in a fast,
Alice and Bob store a small seed stretch their seeds Iinto large non-cryptographic online phase.
afterwards. pseudorandom correlated strings.

Preprocessing phase Online phase

Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

—

A N ~ A
seed Ul seedp
. G

Expand(i, seed,)
Y N\

(u,wy e F,xF, (V,wp) e F,xXF,

Oblivious transfer correlation:

A construction from LPN

0. Rewriting the ‘many OTs correlation’

Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short A construction from LPN

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

0. Rewriting the ‘many OTs correlation’

N
o S ——a
seed Ul seedp

am Cen(1)

Expand(i, seed,)
Y N\

(u,wy e F,xF, (V,wp) e F,xXF,

— —_— —

Wp= U %V

Oblivious transfer correlation:| W A +

Because 5, @ s, = b - (s, D s;), Hence u are the

selection bits, W are the s,’s, W, are the outputs,
e J

and v allows to recover the s;’s.

Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short A construction from LPN

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

AN [IKNPO3]: subfied vector-OLE correlation + correlation-robust
Y b ~ hash functions gives (pseudorandom) OT correlations.
seedy & seedp .
I\ Gen(1%) Y , Subfield vector-OLE !
Expand(i, seed;) (u,wy) €, X, (x, Wp) € Fy X F,
— —> —>
/ \ WA + WB =X U

(u,wy e F,xF, (V,wp) e F,xXF,

—_— —

= [~ [~ _) _>
Oblivious transfer correlation:| W, + Wp = U * V

Because 5, @ s, = b - (s, D s;), Hence u are the

selection bits, W are the s,’s, W, are the outputs,
e J

and v allows to recover the s;’s.

Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

N
e S —a
seedy Ul seedp

BR Cen(h)

Expand(i, seed,)
Y N\

(u,wy e F,xF, (V,wp) € F,xF,

—

o i e e o e
Oblivious transfer correlation:| W, + Wp = U * V

A construction from LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

[IKNPO3]: subfied vector-OLE correlation + correlation-robust
hash functions gives (pseudorandom) OT correlations.

, Subfield vector-OLE ’

(uw,wy) e xF, (x, wp) € F xF,

—

— —

Intuition. the i-th (string-) OT is:
- (Sps $1) = (H(_WB,i)a H(x — WB,Z'))
- (b,sp) = (u;, H(WA,Z'))

Because s, @ so = b - (55 D s;), Hence u are the where H is a correlation-robust hash function.

selection bits, W are the s,’s, W, are the outputs,

and v allows to recover the s;’s.

Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

N
A N ~ A
seed Ul seedp

mp Gen(lH g

Expand(i, seed;)
4 N

(w,wy) € FIXF, (x, wp) € F) X F,

—>

X U

W, + Wp

New target

A construction from LPN

0. Rewriting the ‘many OTs correlation’

1. Reduction to subfield-VOLE
2. Constructing a PCG for subfield-VOLE

Three steps:

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

. —
@ Construction for a random ¢-sparse vector u
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

: . —>
Construction for a random unit vector u
from puncturable pseudorandom functions

0. Rewriting the ‘many OTs correlation’

1. Reduction to subfield-VOLE
’ ‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, . seed B — (7, Three steps:

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

R
seed UX seedp

[Gen(1") [

Expand(i, seed;)
¥ X

(w,wy € xF,, (x, wp) € Fu x F,

—

Wi+ Wp=x-1u

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ ‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, . seed B — (7, Three steps:
GGM Construction for a random unit vector u’

from puncturable pseudorandom functions

R
seed UX seedp

A NANANAN W
RARARR RS

(w,wy € xF,, (x, wp) € Fu x F,

—

Wi+ Wp=x-1u

I%IDD!;IDDDI%IDDI;IDDDDI%I

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ . ‘ (a: u, =1) 2. Constructing a PCG for subfield-VOLE
seedy = (x,K) | seedg = (u, Three steps:
GGM Construction for a random unit vector u’

from puncturable pseudorandom functions

R
seed UX seedp

A NANANAN W
RARARR RS

(w,wy € xF,, (x, wp) € Fu x F,

—

Wi+ Wp=x-1u

I%IDD!;IDDDI%IDDI;IDDDDI%I

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’

:

1. Reduction to subfield-VOLE
‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE

seed A= (x, K) seed B = (7, Three steps:

GGM Construction for a random unit vector u

from puncturable pseudorandom functions

R
S~~~ &> o~
seed, UX seedp

N L3
L
AAANNNAR AN

(w,wy) € FSxXF, (x, Wp) € Fu X F,

—

Wi+ Wp=x-1u

I%IDD!;IDDIEDDI;IDDDDI%I

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ . ‘ (@: u,=1) 2, Constructing a PCG for subfield-VOLE

seedA = (X, K) seedB = (7,,. D x) Three steps:

GGM Construction for a random unit vector u

from puncturable pseudorandom functions

R
S~~~ &> o~
seed, UX seedp

N L3
L P
AAANNNAR AN

(w,wy) € FSxXF, (x, Wp) € Fu X F,

—

Wi+ Wp=x-1u

I%IDD!;IDDIEDDI;IDDDDI%I

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ . ‘ (@: u,=1) 2, Constructing a PCG for subfield-VOLE

seedA = (X, K) seedB = (7,,. D x) Three steps:

W, < FullEval(K) wp < Insert(x @ Fyg(a), FullEval(K,,,))
GGM Construction for a random unit vector u’
from puncturable pseudorandom functions
EEN
/ \
seed, UX seedp
M)
{ Expand(i, seed;) \

(w,wy) € FSxXF, (x, Wp) € Fu X F,

I%IDD!;IDDIEDDI;IDDDDI%I

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

. —_—>
Construction for a random f-sparse vector u

via ¢ parallel repetitions of (1) 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ ! (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, Kl) seedp = (Ui, {061}’ FKl(Oll) @D x) Three steps:
K2 § (u,, K{al},FKz(az) @ x)

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

Kt (7t9 Kfat}a FKf(at) @ X)

. —
@ Construction for a random ¢-sparse vector u

—
- Write U as a sum of ¢ unit vectors u -+ u / via ¢ parallel repetitions of (1)

* Apply the previous construction f times (with the same Xx)
» After expansion, the parties locally sum their shares:

[5 5
Dv.|e| DV)=« Dwi=x

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a pseudorandom vector u

using dual-LPN
1. Reduction to subfield-VOLE

’ /Same seeds asin step (2)\ ! 2, Constructing a PCG for subfield-VOLE

seedy seedp Three steps:

0. Rewriting the ‘many OTs correlation’

[-sparse vector

— \6 > > _ . —
(x, w A) u, w B) @ Construction for a random unit vector u

from puncturable pseudorandom functions

The LPN assumption - primal

. —
@ Construction for a random ¢-sparse vector u
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN

Pseudorandom Correlation Generators - Walkthrough

Construction for a pseudorandom vector u A construction from LPN

using dual-LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

, Same seeds as In step (2)\ ! 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

from puncturable pseudorandom functions

— \6 > > _ . —
(x, w A) u, w B) @ Construction for a random unit vector u

The LPN assumption - primal

@ Construction for a random #-sparse vector u’

. . _|_ ~ via t parallel repetitions of (1)
. —
T @ Construction for a pseudorandom vector u

using dual-LPN

Random matrix Short secret Sparse noise

Pseudorandom Correlation Generators - Walkthrough

Construction for a pseudorandom vector u A construction from LPN

using dual-LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

’ Same seeds as In step (2)\ ‘ 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

from puncturable pseudorandom functions

EVES \6 > — . . .
(x, w A) u, w B) @ Construction for a random unit vector u

The LPN assumption - primal

@ Construction for a random #-sparse vector u’

. . _|_ ~ via t parallel repetitions of (1)
. —
T @ Construction for a pseudorandom vector u

using dual-LPN

Parity-check Random matrix Short secret Sparse noise
matrix of G

Pseudorandom Correlation Generators - Walkthrough

Construction for a pseudorandom vector u A construction from LPN

using dual-LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

’ Same seeds as In step (2)\ ‘ 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

from puncturable pseudorandom functions

EVES \6 > — . . .
(x, w A) u, w B) @ Construction for a random unit vector u

The LPN assumption - primal

@ Construction for a random #-sparse vector u’

. . _|_ ~ via t parallel repetitions of (1)
. —
T @ Construction for a pseudorandom vector u

using dual-LPN

Parity-check Random matrix Short secret Sparse noise
matrix of G

Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a pseudorandom vector u’
using dual-LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

, Same seeds as In step (2)\ ! 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

—_ \6 > > N
(x, w A) u, w B) @ Construction for a random unit vector u

from puncturable pseudorandom functions

The LPN assumption - dual

@ Construction for a random #-sparse vector u’

, - . ~ $ via t parallel repetitions of (1)
@ Construction for a pseudorandom vector u
using dual-LPN

Random matrix Sparse noise

Pseudorandom Correlation Generators - Walkthrough

- —
Construction for a pseudorandom vector u

using dual-LPN

’ Same seeds as in step (2) ’

SeedA t-sparse vector seedp

A
(x, W4) \Cu Wp)

The LPN assumption - dual

o

Random matrix Sparse noise

Dual Version: Syndrome Decoding

Problem: find s

e

e

lid noise vector of rate €

| Problem: find e

€
o)

€

lld noise vector of rate €

Remember, from Benny’s talk on Monday

Pseudorandom Correlation Generators - Walkthrough

. —_—
Construction for a pseudorandom vector u
using dual-LPN

’ Same seeds as in step (2) !

Se?dA t-sparse vector Se§dB

(X, W) \(- 7, W)

(x, H-w),) (H-u,H-Wwp)

H-Wy+H-Wg=H-(x-uw)=x-(H-u)

/

Pseudorandom under the LPN assumption

A construction from LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector u’
from puncturable pseudorandom functions

@ Construction for a random #-sparse vector u’
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN

Pseudorandom Correlation Generators - Efficiently?

Wrapping-up

—

seedp
A
(2, Wy) (', Wp)
|seed | ~ A -t |seedg| =~ A -t-logn

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.

Placing the Assumption in the LPN Landscape

Remember this slide, shamefully Known Attacks
stolen from Benny’s talk on
Samples
Monday? (m)
n » n
exp(log n) exp(log n) [BKWO3]
1+c
n exp(fouiog n) [Lyu05]
- Quasi-Poly Sub-Exp Exp
exp(n'=%) exp(n)
Poly-time « SZK PKE Non-Trivial attacks
(BK02, Worst->avg + implication
APY0g] IBLVIWTS — (BJMM12,AIK04] 0.5
n n

Placing the Assumption in the LPN Landscape

Remember this slide, shamefully

stolen from Benny’s talk on
Monday?

We use O(n) samples and
noise A/n. Therefore, we have
exp. security in A, and we do

not view n as the security

parameter anymore (since it is
our target number of OTs)

Samples

(m)

n

exp(log n

n1+c

)

Known Attacks

4

Poly-time « SZK

APY09] IBLVW18]

PKE

worst->av
[BKO2, 9 : [Ale03]

n

exp() [BKWO03]

logn

exp() [Lyu03]

loglog n

Exp
exp(n)
Non-Trivial attacks
+ implication
(BJMM12 AIK04]

0.5

logn log? n
n n

1
ms2

Noise

Pseudorandom Correlation Generators - Efficiently?

Wrapping-up Is this really efficient?

—

WA‘I'T‘;B = XU The expansion of the PCG boils down to the

computation of

seedp

4 T

—

Big random matrix X- e

> —> Where ¢ is a very sparse vector, and (the shares of) the
(xa WA) (uaWB) . — C . . .
entries of x - e can be computed individually in log-time.

|seed | ~ A -t |seedg| =~ A -t-logn

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.

Pseudorandom Correlation Generators - Efficiently?

Wrapping-up Is this really efficient?

—

WA+WB = XU The expansion of the PCG boils down to the

computation of

seedp

A I

Big random matrix X- e

> —> Where ¢ is a very sparse vector, and (the shares of) the
(xa WA) (uaWB) . — C . . .
entries of x - e can be computed individually in log-time.

But remember that n is the number of OTs we want:
it’s easily in the millions or billions.

|seedy | ~ A - ¢ | seedp| ~ 4 -1-logn g Computing H - {x - '€) takes a time quadratic in n...

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.

This is nowhere near practical!

Pseudorandom Correlation Generators - Efficiently?

Wrapping-up

—

seedp
A
(2, Wy) (u, Wp)
|seed | ~ A -t |seedg| =~ A -t-logn

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.

Is this really efficient?

The expansion of the PCG boils down to the
computation of

!

—

Big random matrix X- e

Where ¢ is a very sparse vector, and (the shares of) the

—

entries of x - e can be computed individually in log-time.

Computing H - {(x - €) takes a time quadratic in n...
But remember that n is the number of OTs we want:

it’s easily in the millions or billions.

This is nowhere near practical!

We need to use variants of LPN, where multiplication
by H is (much) faster, ideally linear-time.

Pseudorandom Correlation Generators - Efficiently?

We want: computing - 'S fast, and the code generated by . is LPN-friendy

Pseudorandom Correlation Generators - Efficiently?

We want: computing IS fast, and the code generated by s LPN-friendy

H

Candidate from the literature: quasi-cyclic codes (i.e., a code such that a cyclic shift by s of a codeword is still a
codeword, for some value s.

e Resistant against LPN attacks: highly plausible “ (was used in the design of several NIST proposals, e.g.
BIKE, HQC, and LEDA, and are considered well studied)

o Fast multiplication: not too bad due to Fast Fourier Transform, O(n - log n) «

Pseudorandom Correlation Generators - Efficiently?

We want: computing IS fast, and the code generated by s LPN-friendy

H

Candidate from the literature: quasi-cyclic codes (i.e., a code such that a cyclic shift by s of a codeword is still a
codeword, for some value s.

e Resistant against LPN attacks: highly plausible “ (was used in the design of several NIST proposals, e.g.
BIKE, HQC, and LEDA, and are considered well studied)

o Fast multiplication: not too bad due to Fast Fourier Transform, O(n - log n) «

O(n - logn) is not too bad, but when n is huge, as in our scenario, it still gives a significant
slowdown... Unfortunately, no existing well-understood ‘LPN-friendly’ candidate has linear time
multiplication by H. So... What do we do?

We try to understand what makes a code ‘LPN-friendly’, and we craft our own!

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published...

e Gaussian Elimination attacks e Information Set Decoding Attacks
e Standard gaussian elimination e Prange’s algorithm [Prange62]
e Blum-Kalai-Wasserman [J. ACM:BKWO03] ¢ Stern’s variant [ICIT:Stern88]
o Sample-efficient BKW [A-R:Lyu05] e Finiasz and Sendrier’s variant [AC:FS09]
e Pooled Gauss [CRYPTO:EKM17] e BJMM variant [EC:BJMM12]
e Well-pooled Gauss [CRYPTO:EKM17] e May-Ozerov variant [EC:MO15]
e [eviel-Fougue [SCN:LFOG6] e Both-May variant [PQC:BM18]
e Covering codes [JC:GJL19] e MMT variant [AC:MMT11]
e (Covering codes+ [BTV15] o Well-pooled MMT [CRYPTO:EKM17]
e Covering codes++ [BV:AC16] e BLP variant [CRYPTO:BLP11]
e Covering codes+++ [EC:ZJW16] e Other Attacks

Generalized birthday [CRYPTO:Wag02]
Improved GBA [Kirchner11]
Linearization [EC:BM97]

Linearization 2 [INDO:Saa07]
Low-weight parity-check [Zichron17]
Low-deg approx [ITCS:ABGKR17]

e Statistical Decoding Attacks
e Jabri’'s attack [ICCC:Jab01]
e QOverbeck’s variant [ACISP:Ove06]
e FKlI's variant [Trans.IT:FKIO6]
e Debris-Tillich variant [ISIT:DT17]

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: al/l these attacks fit in the
same framework, the linear test framework. (*)

Game
1.Send G to (i

Linear Test
Framework

et e — %

returns a test vector
v computed from G in
unbounded time

e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk
e Standard gaussian elimination Prange’s algorithm [Prange62]
e Blum-Kalai-Wasserman [J. ACM:BKWO03] ¢ Stern’s variant [ICIT:Stern88]

e Sample-efficient BKW [A-R:Lyu05] Finiasz and Sendrier’s variant [AC:FS09] _ .
BJMM variant [EC:BJMM12]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17] May-Ozerov variant [EC:MO15] +
Both-May variant [PQC:BM18]

Leviel-Fouque [SCN:LFO6]
MMT variant [AC:MMT11]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]
Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTO:Wag02]

Jabri's attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o

The adversary wins in the distribution induced by

(over a random choice of secret and sparse
noise) is non-negligibly biased.

([]
o
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]

e Debris-Tillich variant [ISIT:DT17] Low=meigihl REI-Chees IZIehant 7]

Low-deg approx [ITCS:ABGKR17]

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: al/l these attacks fit in the
same framework, the linear test framework. (*)

Game
5 H
Linear Test 1. Send H 10 -
ﬁ
Framework
. CP
2. hf returns a test vector
Vcomputed from H in
unbounded time
e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk

The adversary wins in the distribution induced by

e Standard gaussian elimination

e Blum-Kalai-Wasserman [J.ACM:BKWO3]
o Sample-efficient BKW [A-R:Lyu05]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17]
Leviel-Fouque [SCN:LFO6]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]

Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTOW&QOZ]

o
Jabri’s attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o
([
o

Prange’s algorithm [Prange62]
Stern’s variant [ICIT:Stern88]

Finiasz and Sendrier’s variant [AC:FS09] _ . .
BJMM variant [EC:BJMM12]

May-Ozerov variant [EC:MO15] H

Both-May variant [PQC:BM18]

MMT variant [AC:MMT11]

(over a random choice of secret and sparse
noise) is non-negligibly biased.

([
[
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]
([

Debris-Tillich variant [ISIT:DT17] OISRl [PEILEnEels | Zeieiif)
Low-deg approx [ITCS:ABGKR17]

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: al/l these attacks fit in the

same framework, the linear test framework. (*)

e Standard gaussian elimination

e Blum-Kalai-Wasserman [J.ACM:BKWO3]
o Sample-efficient BKW [A-R:Lyu05]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17]
Leviel-Fouque [SCN:LFO6]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]

Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTOW&QOZ]

o
Jabri’s attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o
([
o

Prange’s algorithm [Prange62]

Stern’s variant [ICIT:Stern88]

Finiasz and Sendrier’s variant [AC:FS09]
BJMM variant [EC:BJMM12]
May-Ozerov variant [EC:MO15]
Both-May variant [PQC:BM18]

MMT variant [AC:MMT11]

([
[
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]
([

Debris-Tillich variant [ISIT:DT17] OISRl [PEILEnEels | Zeieiif)
Low-deg approx [ITCS:ABGKR17]

Game
5 H
Linear Test 1. Send H to -
ﬁ
Framework
BT —
2. returns a test vector
Vcomputed from H in
(*): highly structured algebraic codes unbounded time
(e.g. Reed-Solomon) are a different beast
e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk

The adversary wins in the distribution induced by

- -
H

(over a random choice of secret and sparse
noise) is non-negligibly biased.

A Sufficient Condition to Withstand all Linear Tests

The adversary wins in the distribution induced by

(Y

(over a random choice of secret and sparse
noise) is non-negligibly biased.

A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:
The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector

(over a random choice of secret and sparse .

noise) is non-negligibly biased.

A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:
The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector

(over a random choice of secret and sparse .

noise) is non-negligibly biased.

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:
The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector

(over a random choice of secret and sparse .

noise) is non-negligibly biased.

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

—

Proof: We consider two complementary cases for any possible attack vector v

A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:
The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector

(over a random choice of secret and sparse .

noise) is non-negligibly biased.

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

—

Proof: We consider two complementary cases for any possible attack vector v

. HW(V) <c-n

If every subset of w rows of G is linearly independent,
then the distribution of (V' - G) - s is truly random (as §
is random and v - G cannot be 0).

A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:

The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector
L E N y y

(over a random choice of secret and sparse .

noise) is non-negligibly biased.

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

—

Proof: We consider two complementary cases for any possible attack vector v

. HW(V) <c¢-n . HW(V) > ¢ - n
If every subset of w rows of G is linearly independent, Ihe noise vector has ¢ randomly chosen nonzero
then the distribution of (V' - G) - § is truly random (as § coordinates out of n entries. Each of them hits a nonzero
is random and v - G cannot be 0). entry of Vv with proba > ¢ - n/n = ¢, hence:

1

1
Pr[v - =1]1>—+((0=-¢)~—+4e
|]2()2

A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:

The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector
L E N y y

(over a random choice of secret and sparse .

noise) is non-negligibly biased. Protects against light linear tests Protects against heavy linear tests

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

—

Proof: We consider two complementary cases for any possible attack vector v

. HW(V) <c¢-n . HW(V) > ¢ - n
If every subset of w rows of G is linearly independent, Ihe noise vector has ¢ randomly chosen nonzero
then the distribution of (V' - G) - § is truly random (as § coordinates out of n entries. Each of them hits a nonzero
is random and v - G cannot be 0). entry of Vv with proba > ¢ - n/n = ¢, hence:

1

1
Pr[v - =1]1>—+((0=-¢)~—+4e
|]2()2

Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent
< the left-kernel of G does not contain nonzero vector of weight less than O(n)
< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear

MmiNnimum distance

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future

Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent
< the left-kernel of G does not contain nonzero vector of weight less than O(n)
< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear

MmiNnimum distance

The expansion of the PCG boils down to the
computation of

Big random matrix X -

Where @ is a very sparse vector, and (the shares of) the
entries of x - € can be computed individually in log-time.

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future

Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent

< the left-kernel of G does not contain nonzero vector of weight less than O(n)

< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear
minimum distance

' . = 'I' .
The expansion of the PCG boils down to the We want to find a matrix M = H" such that:

computation of
. The code generated by M is a good code

. Computing MT - ¥ takes time O(n) for any Vv’

Big random matrix X -

Where @ is a very sparse vector, and (the shares of) the
entries of x - € can be computed individually in log-time.

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future

Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent

< the left-kernel of G does not contain nonzero vector of weight less than O(n)

< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear
minimum distance

' . = 'I' .
The expansion of the PCG boils down to the We want to find a matrix M = H" such that:

computation of
. The code generated by M is a good code

. Computing MI—= takes time O(n) for any Vv’
M -V (this is the transposition principle)

Big random matrix X -

Where @ is a very sparse vector, and (the shares of) the
entries of x - € can be computed individually in log-time.

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future

Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent

< the left-kernel of G does not contain nonzero vector of weight less than O(n)

< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear
minimum distance

' . = 'I' .
The expansion of the PCG boils down to the We want to find a matrix M = H" such that:

computation of
. The code generated by M is a good code

. Computing MI—= takes time O(n) for any Vv’
M -V (this is the transposition principle)

—> We need to find a good and linear-time

Big random matrix X - . .
| encodable code. And we want it concretely efticient!

Where @ is a very sparse vector, and (the shares of) the
entries of x - € can be computed individually in log-time.

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future

Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent
< the left-kernel of G does not contain nonzero vector of weight less than O(n)
< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear

MmiNnimum distance

Simple Distinguishing Attack

In a sense, this is a (very partial) converse to the result,
described by Benny last Monday, that this condition is also
a necessary condition.

Goal: Distinguish (A,b) from (A, uniform)

‘ E
(Benny'’s slide) | —

& Distinguisher’s
: ” : ; : - output
Find “small” set of linearly dependent rows in A of size A

- Distinguisher outputs 1 on LPN w/p (1 — €)2 =~ exp(—A¢)

» Distinguisher outputs 1 on uniform w/p 0.5
Distinguishing advantage of exp(—Ae)
« Want large dual distance A (whp)

Ignoring complexity of finding small dependency

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing -
H

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing -
H

< computing

HT

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing -
H

<= computing <= computing

HT FsYst

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
Computing -
H

< finding = such that

<= computing <= computing

HT FSYst

= (), where M is the associated parity-check matrix

M

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing -
H

< finding = such that M . = (), where M is the associated parity-check matrix

<= computing <= computing

HT FsYst

Core idea: use a sparse M which can be brought in

approximate lower triangular form:

* \We have tast encoder for such parity-check matrices

 We have good insights on the minimum distance of
the associated code, e.g. Tillich-Zémor, ISIT'06

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing - < computing . < computing
= H' H™*!

< finding = such that M . = (), where M is the associated parity-check matrix

Core idea: use a sparse M which can be brought in

approximate lower triangular form:

* We have fast encoder for such parity-check matrices M

 We have good insights on the minimum distance of C
the associated code, e.g. Tillich-Zémor, ISIT'06 “

8

Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing - < computing . < computing
= H' H™*!

< finding = such that M . = (), where M is the associated parity-check matrix

Core idea: use a sparse M which can be brought in

approximate lower triangular form:

* We have fast encoder for such parity-check matrices M

 We have good insights on the minimum distance of C
the associated code, e.g. Tillich-Zémor, ISIT'06 “

—> encode in time O(n + gz), inear if g < \/E g

Thank You for Your Attention!

Questions?

Secure Computation from Oblivious Transfer
Step-by Step Solution

Warm-up |: 2-Party Product Sharing

‘Secure Product’

Functionality

Y1 Y2

(y1,y2) random conditioned on y; @ yo = 122

Warm-up ll: Variant

This time, Alice and Bob start with shares of values (X,y), and want to compute shares of the product x.y

P _ .
g ‘Secure Shared
v Product’
(b17 b2)
21 <2

(a1,b1) are shares of x
(asz,bs) are shares of y
(21, 22) are random shares of z =z - y

® We use an OT functionality where Alice is the receiver, and her selection bit is her input 9
e What should be Bob’s input? Let’s work out the equation:

Sz, = T+ 81 + (Z2) * S0 — EB Szs =[(80 D 51)]' X2

= To * 8 @ 1@56 * S
251 O (2) * S0 Share of Bob This should be 1

= S0 D (80 D 31) * L2 :} (30, 31) are (2,2)-shares of I'1.

Solution

o

by ‘Secure Product’
Functionality

v

(b17 b2) U1

Ty = (a1+0b1)- (az + b2)

=a1 - a2 +[al : bz)'l‘[az . bl)-l-[bl y bg) : /ul\'*' :Ul\'*' 'bl - bo]

A

o)

v

Value known to Alice T T Value known to Bob Q
J Y & 2/+\’02} +|a1-a2'

+
Uu
[Each of these values is the product of a value known l

to Alice and a value known to Bob

.

