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What is Secure Computation®

Secure communication Secure computation
Goal: communicating a secret message Goal: computing a (public) function on secret inputs
JaCos ) fp(e )
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Output: Bob learns m Output: Alice learns ]f4(X, y) and Bob learn f B(x, y)
Security: Eve learns nothing Security: Alice and Bob learn nothing else

Y

m

* |t’s a more fine-grained approach to security: the function controls precisely what

IS learned (secure communication is all or nothing)
* |t is much more demanding: now the adversary is internal (Alice must be protected

against Bob, and Bob against Alice), and can influence the protocol!
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Oblivious Transfer
A minimal example of secure computation

* 0%

(S()a Sl)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn s,_,.
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Output: Alice learns f4(x, V) and

Bob learns f B(X y)

Security: Alice and Bob learn nothing else

1. Use (additive) secret sharing

2. Write the function as a circuit
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3. Use OT to compute the gates

share(x,y) = share(GATE(x, y))

I’ll skip the details for now, but feel
free to ask for them!
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Then the parties can use it to perform an arbitrary oblivious
transfer!

(Simple) protocol:

» f a=b and Bob gets (s, D ry,s; D ry), he can get
S, = §,, since he knows only r,, = r,,.

 Ifa =1 — b and Bob gets (sy D ry, 51 D ry), he again gets
S;,, since he knows only r;_,.

» Bob simply tells Alice whether a = b (leaks nothing since a
is random!), and Alice sends the appropriate pair.

Given many random OTs, one can compute an arbitrary

function! The protocol is

* |Information-theoretically secure

* Very fast: only three bits exchanged per OT! (In practice,
this means 6 bits / AND gate, and 0 / XOR gate)

This i1s the correlated randomness model: fast, information-
theoretically secure computation given access to a (trusted)
source of correlated random coins.

The natural question:

Can we efficiently generate (securely) large
amounts of correlated randomness?

Perhaps the most fundamental question in
secure computation!

This talk:

Can we compress correlated randomness?

Turns out to be just the right way to ask the
previous question.
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Correlated Randomness in Cryptography

A source of secret correlated randomness is an extremely useful resource in secure protocols:

+ + 4

GMW S
Sy < @,%

One-time pad o\ »
L = QO

Correlation: R, = Ry Correlation: R, + Rz = S, A Sp
(Equality correlation) (Oblivious transfer correlation)
Equality correlations can be compressed using a PRG: Can OT correlations be compressed using a PCG?
++i+\ +
seed 4 UX

seedp seedy seedp
@ Gen(1%)

Expand(i, seed;)
R, = PRG(seed,) R, = PRG(seedp) (R, Sy) (Rg, Sp)
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Pseudorandom correlation generator: Gen(1%) — (seed,, seedg) such that (1) (Expand(A, seed,), Expand(B, seedp))
looks like n samples from the target correlation, and (2) Expand(A, seed,) looks ‘random conditioned on satisfying the
correlation with Expand(B, seedp)’ to Bob (similar property w.r.t. Alice).

One-time short interaction ‘Silent’ computation Non-cryptographic
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A B 5 J(x,y)
Expand(seed,) : Expand(seedp)

Interactive protocol with short The bulk of the preprocessing Alice and Bob consume the
communication and computation; phase is offline: Alice and Bob preprocessing material in a fast,
Alice and Bob store a small seed stretch their seeds Iinto large non-cryptographic online phase.
afterwards. pseudorandom correlated strings.

Preprocessing phase Online phase
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hash functions gives (pseudorandom) OT correlations.

, Subfield vector-OLE ’

(uw,wy) e xF, (x, wp) € F xF,

—

— —

Intuition. the i-th (string-) OT is:
- (Sps $1) = (H(_WB,i)a H(x — WB,Z'))
- (b,sp) = (u;, H(WA,Z'))

Because s, @ so = b - (55 D s;), Hence u are the where H is a correlation-robust hash function.

selection bits, W are the s,’s, W, are the outputs,

and v allows to recover the s;’s.



Pseudorandom Correlation Generators - Walkthrough

A quick reminder of what we want: Gen generates short

correlated seeds which can be locally expanded into
pseudorandom instances of a target correlation.

N
A N ~ A
seed Ul seedp

mp Gen(lH g

Expand(i, seed;)
4 N

(w,wy) € FIXF, (x, wp) € F) X F,

—>

X U

W, + Wp

New target

A construction from LPN

0. Rewriting the ‘many OTs correlation’

1. Reduction to subfield-VOLE
2. Constructing a PCG for subfield-VOLE

Three steps:

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

. —
@ Construction for a random ¢-sparse vector u
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN



Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

: . —>
Construction for a random unit vector u
from puncturable pseudorandom functions

0. Rewriting the ‘many OTs correlation’

1. Reduction to subfield-VOLE
’ ‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, . seed B — (7, Three steps:

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

R
seed UX seedp

[ Gen(1") [

Expand(i, seed;)
¥ X

(w,wy € xF,, (x, wp) € Fu x F,

—

Wi+ Wp=x-1u




Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ ‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, . seed B — (7, Three steps:
GGM Construction for a random unit vector u’

from puncturable pseudorandom functions

R
seed UX seedp

A NANANAN W
RARARR RS

(w,wy € xF,, (x, wp) € Fu x F,

—

Wi+ Wp=x-1u

I%IDD!;IDDDI%IDDI;IDDDDI%I



Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ . ‘ (a: u, =1) 2. Constructing a PCG for subfield-VOLE
seedy = (x,K) | seedg = (u, Three steps:
GGM Construction for a random unit vector u’

from puncturable pseudorandom functions

R
seed UX seedp

A NANANAN W
RARARR RS

(w,wy € xF,, (x, wp) € Fu x F,

—

Wi+ Wp=x-1u

I%IDD!;IDDDI%IDDI;IDDDDI%I



Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’

:

1. Reduction to subfield-VOLE
‘ (a@: u,=1) 2, Constructing a PCG for subfield-VOLE

seed A= (x, K ) seed B = (7, Three steps:

GGM Construction for a random unit vector u

from puncturable pseudorandom functions

R
S~~~ &> o~
seed, UX seedp

N L3
L
AAANNNAR AN

(w,wy) € FSxXF, (x, Wp) € Fu X F,

—

Wi+ Wp=x-1u

I%IDD!;IDDIEDDI;IDDDDI%I



Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u

from puncturable pseudorandom functions 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ . ‘ (@: u,=1) 2, Constructing a PCG for subfield-VOLE

seedA = (X, K ) seedB = (7, ....,. D x) Three steps:

GGM Construction for a random unit vector u

from puncturable pseudorandom functions

R
S~~~ &> o~
seed, UX seedp

N L3
L P
AAANNNAR AN

(w,wy) € FSxXF, (x, Wp) € Fu X F,

—

Wi+ Wp=x-1u

I%IDD!;IDDIEDDI;IDDDDI%I



Pseudorandom Correlation Generators - Walkthrough

A construction from LPN

Construction for a random unit vector u
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A construction from LPN

. —_—>
Construction for a random f-sparse vector u

via ¢ parallel repetitions of (1) 0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE
’ ! (a@: u,=1) 2, Constructing a PCG for subfield-VOLE
seed, = (x, Kl) seedp = ( Ui, {061}’ FKl(Oll) @D x) Three steps:
K2 § (u,, K{al},FKz(az) @ x)

. - g
Construction for a random unit vector u
from puncturable pseudorandom functions

Kt (7t9 Kfat}a FKf(at) @ X)

. —
@ Construction for a random ¢-sparse vector u

—
- Write U as a sum of ¢ unit vectors u -+ u / via ¢ parallel repetitions of (1)

* Apply the previous construction f times (with the same Xx)
» After expansion, the parties locally sum their shares:

[ 5 5
Dv.|e| DV )=« Dwi=x
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A construction from LPN

Construction for a pseudorandom vector u’
using dual-LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

, Same seeds as In step (2)\ ! 2. Constructing a PCG for subfield-VOLE

seed A seid B Three steps:

[-sparse vector

—_ \6 > > N
(x, w A) u, w B) @ Construction for a random unit vector u

from puncturable pseudorandom functions
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@ Construction for a random #-sparse vector u’
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Pseudorandom Correlation Generators - Walkthrough

- —
Construction for a pseudorandom vector u

using dual-LPN

’ Same seeds as in step (2) ’

SeedA t-sparse vector seedp

A
(x, W4) \Cu Wp)

The LPN assumption - dual

o

Random matrix Sparse noise

Dual Version: Syndrome Decoding

Problem: find s

e

e

lid noise vector of rate €

| Problem: find e

€
o)

€

lld noise vector of rate €

Remember, from Benny’s talk on Monday
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. —_—
Construction for a pseudorandom vector u
using dual-LPN

’ Same seeds as in step (2) !

Se?dA t-sparse vector Se§dB

(X, W) \(- 7, W )

(x, H-w),) (H-u,H-Wwp)

H-Wy+H-Wg=H-(x-uw)=x-(H-u)

/

Pseudorandom under the LPN assumption

A construction from LPN

0. Rewriting the ‘many OTs correlation’
1. Reduction to subfield-VOLE

2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector u’
from puncturable pseudorandom functions

@ Construction for a random #-sparse vector u’
via t parallel repetitions of (1)

. —_—
@ Construction for a pseudorandom vector u
using dual-LPN



Pseudorandom Correlation Generators - Efficiently?

Wrapping-up

—

seedp
A
(2, Wy) (', Wp)
|seed | ~ A -t |seedg| =~ A -t-logn

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.
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Samples
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n » n
exp(log n) exp( log n ) [BKWO3]
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Placing the Assumption in the LPN Landscape

Remember this slide, shamefully

stolen from Benny’s talk on
Monday?

We use O(n) samples and
noise A/n. Therefore, we have
exp. security in A, and we do

not view n as the security

parameter anymore (since it is
our target number of OTs)

Samples

(m)

n

exp(log n

n1+c

)

Known Attacks

4

Poly-time « SZK

APY09] IBLVW18]

PKE

worst->av
[BKO2, 9 : [Ale03]

n

exp( ) [BKWO03]

logn

exp( ) [Lyu03]

loglog n

Exp
exp(n)
Non-Trivial attacks
+ implication
(BJMM12 AIK04]

0.5

logn log? n
n n

1
ms2

Noise
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Wrapping-up Is this really efficient?

—

WA‘I'T‘;B = XU The expansion of the PCG boils down to the

computation of

seedp

4 T

—

Big random matrix X- e

> —> Where ¢ is a very sparse vector, and (the shares of) the
(xa WA) (uaWB) . — C . . .
entries of x - e can be computed individually in log-time.

|seed | ~ A -t |seedg| =~ A -t-logn

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.
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Wrapping-up Is this really efficient?

—

WA+WB = XU The expansion of the PCG boils down to the

computation of

seedp

A I

Big random matrix X- e

> —> Where ¢ is a very sparse vector, and (the shares of) the
(xa WA) (uaWB) . — C . . .
entries of x - e can be computed individually in log-time.

But remember that n is the number of OTs we want:
it’s easily in the millions or billions.

|seedy | ~ A - ¢ | seedp| ~ 4 -1-logn g Computing H - {x - '€ ) takes a time quadratic in n...

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.

This is nowhere near practical!



Pseudorandom Correlation Generators - Efficiently?

Wrapping-up

—

seedp
A
(2, Wy) (u, Wp)
|seed | ~ A -t |seedg| =~ A -t-logn

» A is a security parameter, f is an LPN
noise parameter, n is the vector length.

 Converted to n pseudorandom OTs via a
correlation-robust hash function.

Is this really efficient?

The expansion of the PCG boils down to the
computation of

!

—

Big random matrix X- e

Where ¢ is a very sparse vector, and (the shares of) the

—

entries of x - e can be computed individually in log-time.

Computing H - {(x - € ) takes a time quadratic in n...
But remember that n is the number of OTs we want:

it’s easily in the millions or billions.

This is nowhere near practical!

We need to use variants of LPN, where multiplication
by H is (much) faster, ideally linear-time.
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We want: computing IS fast, and the code generated by s LPN-friendy

H

Candidate from the literature: quasi-cyclic codes (i.e., a code such that a cyclic shift by s of a codeword is still a
codeword, for some value s.

e Resistant against LPN attacks: highly plausible “ (was used in the design of several NIST proposals, e.g.
BIKE, HQC, and LEDA, and are considered well studied)

o Fast multiplication: not too bad due to Fast Fourier Transform, O(n - log n) «



Pseudorandom Correlation Generators - Efficiently?

We want: computing IS fast, and the code generated by s LPN-friendy

H

Candidate from the literature: quasi-cyclic codes (i.e., a code such that a cyclic shift by s of a codeword is still a
codeword, for some value s.

e Resistant against LPN attacks: highly plausible “ (was used in the design of several NIST proposals, e.g.
BIKE, HQC, and LEDA, and are considered well studied)

o Fast multiplication: not too bad due to Fast Fourier Transform, O(n - log n) «

O(n - logn) is not too bad, but when n is huge, as in our scenario, it still gives a significant
slowdown... Unfortunately, no existing well-understood ‘LPN-friendly’ candidate has linear time
multiplication by H. So... What do we do?

We try to understand what makes a code ‘LPN-friendly’, and we craft our own!



Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published...

e Gaussian Elimination attacks e Information Set Decoding Attacks
e Standard gaussian elimination e Prange’s algorithm [Prange62]
e Blum-Kalai-Wasserman [J. ACM:BKWO03] ¢ Stern’s variant [ICIT:Stern88]
o Sample-efficient BKW [A-R:Lyu05] e Finiasz and Sendrier’s variant [AC:FS09]
e Pooled Gauss [CRYPTO:EKM17] e BJMM variant [EC:BJMM12]
e Well-pooled Gauss [CRYPTO:EKM17] e May-Ozerov variant [EC:MO15]
e [ eviel-Fougue [SCN:LFOG6] e Both-May variant [PQC:BM18]
e Covering codes [JC:GJL19] e MMT variant [AC:MMT11]
e (Covering codes+ [BTV15] o Well-pooled MMT [CRYPTO:EKM17]
e Covering codes++ [BV:AC16] e BLP variant [CRYPTO:BLP11]
e Covering codes+++ [EC:ZJW16] e Other Attacks

Generalized birthday [CRYPTO:Wag02]
Improved GBA [Kirchner11]
Linearization [EC:BM97]

Linearization 2 [INDO:Saa07]
Low-weight parity-check [Zichron17]
Low-deg approx [ITCS:ABGKR17]

e Statistical Decoding Attacks
e Jabri’'s attack [ICCC:Jab01]
e QOverbeck’s variant [ACISP:Ove06]
e FKlI's variant [Trans.IT:FKIO6]
e Debris-Tillich variant [ISIT:DT17]




Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: al/l these attacks fit in the
same framework, the linear test framework. (*)

Game
1.Send G to ( i

Linear Test
Framework

et e — %

returns a test vector
v computed from G in
unbounded time

e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk
e Standard gaussian elimination Prange’s algorithm [Prange62]
e Blum-Kalai-Wasserman [J. ACM:BKWO03] ¢ Stern’s variant [ICIT:Stern88]

e Sample-efficient BKW [A-R:Lyu05] Finiasz and Sendrier’s variant [AC:FS09] _ .
BJMM variant [EC:BJMM12]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17] May-Ozerov variant [EC:MO15] +
Both-May variant [PQC:BM18]

Leviel-Fouque [SCN:LFO6]
MMT variant [AC:MMT11]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]
Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTO:Wag02]

Jabri's attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o

The adversary wins in the distribution induced by

(over a random choice of secret and sparse
noise) is non-negligibly biased.

([ ]
o
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]
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Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: al/l these attacks fit in the
same framework, the linear test framework. (*)

Game
5 H
Linear Test 1. Send H 10 -
ﬁ
Framework
. CP
2. hf returns a test vector
Vcomputed from H in
unbounded time
e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk

The adversary wins in the distribution induced by

e Standard gaussian elimination

e Blum-Kalai-Wasserman [J.ACM:BKWO3]
o Sample-efficient BKW [A-R:Lyu05]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17]
Leviel-Fouque [SCN:LFO6]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]
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e Statistical Decoding Attacks Generalized birthday [CRYPTOW&QOZ]

o
Jabri’s attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o
([
o

Prange’s algorithm [Prange62]
Stern’s variant [ICIT:Stern88]

Finiasz and Sendrier’s variant [AC:FS09] _ . .
BJMM variant [EC:BJMM12]
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[
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Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published... Crucial observation: al/l these attacks fit in the

same framework, the linear test framework. (*)

e Standard gaussian elimination

e Blum-Kalai-Wasserman [J.ACM:BKWO3]
o Sample-efficient BKW [A-R:Lyu05]

e Pooled Gauss [CRYPTO:EKM17]
Well-pooled Gauss [CRYPTO:EKM17]
Leviel-Fouque [SCN:LFO6]

Covering codes [JC:GJL19]

Covering codes+ [BTV15] Well-pooled MMT [CRYPTO:EKM17]
Covering codes++ [BV:AC16] BLP variant [CRYPTO:BLP11]

Covering codes+++ [EC:ZJW16] e Other Attacks

e Statistical Decoding Attacks Generalized birthday [CRYPTOW&QOZ]

o
Jabri’s attack [ICCC:Jab01] * Improved GBA [Kirchner11]
Overbeck’s variant [ACISP:Ove06] * Linearization [EC:BM97]
o
([
o

Prange’s algorithm [Prange62]

Stern’s variant [ICIT:Stern88]

Finiasz and Sendrier’s variant [AC:FS09]
BJMM variant [EC:BJMM12]
May-Ozerov variant [EC:MO15]
Both-May variant [PQC:BM18]

MMT variant [AC:MMT11]

([
[
e FKI's variant [Trans.IT:FKI06] Linearization 2 [NDO:saa07]
([

Debris-Tillich variant [ISIT:DT17] OISRl [PEILEnEels | Zeieiif)
Low-deg approx [ITCS:ABGKR17]

Game
5 H
Linear Test 1. Send H to -
ﬁ
Framework
BT —
2. returns a test vector
Vcomputed from H in
(*): highly structured algebraic codes unbounded time
(e.g. Reed-Solomon) are a different beast
e Gaussian Elimination attacks e Information Set Decoding Attacks CheCk

The adversary wins in the distribution induced by

- -
H

(over a random choice of secret and sparse
noise) is non-negligibly biased.
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every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.
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If every subset of w rows of G is linearly independent,
then the distribution of (V' - G) - s is truly random (as §
is random and v - G cannot be 0).



A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:

The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector
L E N y y

(over a random choice of secret and sparse .

noise) is non-negligibly biased.

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

—

Proof: We consider two complementary cases for any possible attack vector v

. HW(V) <c¢-n . HW(V) > ¢ - n
If every subset of w rows of G is linearly independent, Ihe noise vector has ¢ randomly chosen nonzero
then the distribution of (V' - G) - § is truly random (as § coordinates out of n entries. Each of them hits a nonzero
is random and v - G cannot be 0). entry of Vv with proba > ¢ - n/n = ¢, hence:

1

1
Pr[v - =1]1>—+((0=-¢)~—+4e
| ]2( )2



A Sufficient Condition to Withstand all Linear Tests

We have a sum of two distributions:

The adversary wins in the distribution induced by

Induced by the codeword Induced by the noise vector
L E N y y

(over a random choice of secret and sparse .

noise) is non-negligibly biased. Protects against light linear tests Protects against heavy linear tests

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant ¢ such that
every subset of ¢ - n rows of G is linearly independent, no linear test can distinguish G - s + € from random.

—

Proof: We consider two complementary cases for any possible attack vector v

. HW(V) <c¢-n . HW(V) > ¢ - n
If every subset of w rows of G is linearly independent, Ihe noise vector has ¢ randomly chosen nonzero
then the distribution of (V' - G) - § is truly random (as § coordinates out of n entries. Each of them hits a nonzero
is random and v - G cannot be 0). entry of Vv with proba > ¢ - n/n = ¢, hence:

1

1
Pr[v - =1]1>—+((0=-¢)~—+4e
| ]2( )2



Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent
< the left-kernel of G does not contain nonzero vector of weight less than O(n)
< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear

MmiNnimum distance

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future
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Every subset of O(n) rows of G is linearly independent

< the left-kernel of G does not contain nonzero vector of weight less than O(n)

< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear
minimum distance

' . = 'I' .
The expansion of the PCG boils down to the We want to find a matrix M = H" such that:

computation of
. The code generated by M is a good code

. Computing MI—= takes time O(n) for any Vv’
M -V (this is the transposition principle)

—> We need to find a good and linear-time

Big random matrix X - . .
| encodable code. And we want it concretely efticient!

Where @ is a very sparse vector, and (the shares of) the
entries of x - € can be computed individually in log-time.

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
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Rephrasing the Sufficient Condition

Every subset of O(n) rows of G is linearly independent
< the left-kernel of G does not contain nonzero vector of weight less than O(n)
< the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear

MmiNnimum distance

Simple Distinguishing Attack

In a sense, this is a (very partial) converse to the result,
described by Benny last Monday, that this condition is also
a necessary condition.

Goal: Distinguish (A,b) from (A, uniform)

‘ E
(Benny'’s slide) | —

& Distinguisher’s
: ” : ; : - output
Find “small” set of linearly dependent rows in A of size A

- Distinguisher outputs 1 on LPN w/p (1 — € )2 =~ exp(—A¢)

» Distinguisher outputs 1 on uniform w/p 0.5
Distinguishing advantage of exp(—Ae)
« Want large dual distance A (whp )

Ignoring complexity of finding small dependency

‘Provable’ candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency).
Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)
More to come In the future
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Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing -
H

< finding = such that M . = (), where M is the associated parity-check matrix

<= computing <= computing

HT FsYst

Core idea: use a sparse M which can be brought in

approximate lower triangular form:

* \We have tast encoder for such parity-check matrices

 We have good insights on the minimum distance of
the associated code, e.g. Tillich-Zémor, ISIT'06
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Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing - < computing . < computing
= H' H™*!

< finding = such that M . = (), where M is the associated parity-check matrix

Core idea: use a sparse M which can be brought in

approximate lower triangular form:

* We have fast encoder for such parity-check matrices M

 We have good insights on the minimum distance of C
the associated code, e.g. Tillich-Zémor, ISIT'06 “
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Rephrasing the Sufficient Condition

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Computing - < computing . < computing
= H' H™*!

< finding = such that M . = (), where M is the associated parity-check matrix

Core idea: use a sparse M which can be brought in

approximate lower triangular form:

* We have fast encoder for such parity-check matrices M

 We have good insights on the minimum distance of C
the associated code, e.g. Tillich-Zémor, ISIT'06 “

—> encode in time O(n + gz), inear if g < \/E g




Thank You for Your Attention!

Questions?







Secure Computation from Oblivious Transfer
Step-by Step Solution

Warm-up |: 2-Party Product Sharing

‘Secure Product’

Functionality

Y1 Y2

(y1,y2) random conditioned on y; @ yo = 122

Warm-up ll: Variant

This time, Alice and Bob start with shares of values (X,y), and want to compute shares of the product x.y

P _ .
g ‘Secure Shared
v Product’
(b17 b2)
21 <2

(a1,b1) are shares of x
(asz,bs) are shares of y
(21, 22) are random shares of z =z - y

® We use an OT functionality where Alice is the receiver, and her selection bit is her input 9
e What should be Bob’s input? Let’s work out the equation:

Sz, = T+ 81 + ( Z2) * S0 — EB Szs =[(80 D 51)]' X2

= To * 8 @ 1@56 * S
251 O ( 2) * S0 Share of Bob  This should be 1

= S0 D (80 D 31) * L2 :} (30, 31) are (2,2)-shares of I'1.

Solution

o

by ‘Secure Product’
Functionality

v

(b17 b2) U1

Ty = (a1+0b1)- (az + b2)

=a1 - a2 +[al : bz)'l‘[az . bl)-l-[bl y bg) : /ul\'*' :Ul\'*' 'bl - bo ]

A

o)

v

Value known to Alice T T Value known to Bob Q
J Y & 2/+\’02} +|a1-a2'

+
Uu
[ Each of these values is the product of a value known l

to Alice and a value known to Bob

.




