How to Generate Correlated Randomness from (variants of) LPN Part I

Based on joint works with: Elette Boyle, Niv Gilboa, Yuval Ishai, Lisa Kohl, Srinivasan Raghuraman, Peter Rindal, Peter Scholl

Cons I I I I I Université de Paris

How to Generate Correlated Randomness from (variants of) LPN Part I

Stay tuned for part II :)

Based on joint works with: Elette Boyle, Niv Gilboa, Yuval Ishai, Lisa Kohl, Srinivasan Raghuraman, Peter Rindal, Peter Scholl

Consolution of the second seco

Secure communication

Goal: communicating a secret message

Security: Eve learns nothing

Secure communication

Goal: *communicating* a secret message

Security: Eve learns nothing

Secure computation

Goal: *computing* a (public) function on secret inputs

Output: Alice learns $f_A(x, y)$ and Bob learn $f_B(x, y)$ **Security:** Alice and Bob learn nothing else

Secure communication

Goal: *communicating* a secret message

Security: Eve learns nothing

- is learned (secure communication is all or nothing)
- against Bob, and Bob against Alice), and can influence the protocol!

Secure computation

Goal: *computing* a (public) function on secret inputs

• It's a more *fine-grained* approach to security: the function controls precisely what It is much more demanding: now the adversary is internal (Alice must be protected

not learn s_{1-b} .

Suppose that, for some reason, the parties could already obtain the result of a *random* oblivious transfer prior to the protocol:

Suppose that, for some reason, the parties could already obtain the result of a *random* oblivious transfer prior to the protocol:

Then the parties can use it to perform an *arbitrary* oblivious transfer!

(Simple) protocol:

- If a = b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b = s_a$, since he knows only $r_b = r_a$.
- If a = 1 b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again gets s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a = b (leaks nothing since a is random!), and Alice sends the appropriate pair.

Suppose that, for some reason, the parties could alread obtain the result of a *random* oblivious transfer prior to the protocol:

Then the parties can use it to perform an *arbitrary* oblivious transfer!

(Simple) protocol:

- If a = b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b = s_a$, since he knows only $r_b = r_a$.
- If a = 1 b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again ge s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a = b (leaks nothing since is random!), and Alice sends the appropriate pair.

dy he	 Given <i>many</i> random OTs, one can compute an function! The protocol is Information-theoretically secure Very fast: only three bits exchanged per OT! (In this means 6 bits / AND gate, and 0 / XOR gate)
	This is the <i>correlated randomness model</i> : fast, infore theoretically secure computation given access to a source of correlated random coins.
us	
_	
get	
ets	
e a	

Given *many* random OTs, one can compute an arbitrary Suppose that, for some reason, the parties could already function! The protocol is obtain the result of a *random* oblivious transfer prior to the Information-theoretically secure protocol: • Very fast: only three bits exchanged per OT! (In practice, this means 6 bits / AND gate, and 0 / XOR gate)

Then the parties can use it to perform an *arbitrary* oblivious transfer!

(Simple) protocol:

- If a = b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b = s_a$, since he knows only $r_b = r_a$.
- If a = 1 b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again gets s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a = b (leaks nothing since a) is random!), and Alice sends the appropriate pair.

This is the correlated randomness model: fast, informationtheoretically secure computation given access to a (trusted) source of correlated random coins.

The natural question:

Can we efficiently generate (securely) large amounts of correlated randomness?

Perhaps the most fundamental question in secure computation!

Given *many* random OTs, one can compute an arbitrary Suppose that, for some reason, the parties could already function! The protocol is obtain the result of a *random* oblivious transfer prior to the Information-theoretically secure protocol:

Then the parties can use it to perform an *arbitrary* oblivious transfer!

(Simple) protocol:

- If a = b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b = s_a$, since he knows only $r_b = r_a$.
- If a = 1 b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again gets s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a = b (leaks nothing since a) is random!), and Alice sends the appropriate pair.

- Very fast: only three bits exchanged per OT! (In practice, this means 6 bits / AND gate, and 0 / XOR gate)

This is the correlated randomness model: fast, informationtheoretically secure computation given access to a (trusted) source of correlated random coins.

The natural question:

Can we efficiently generate (securely) large amounts of correlated randomness?

Perhaps the most fundamental question in secure computation!

This talk:

Can we *compress* correlated randomness?

Turns out to be just the right way to ask the previous question.

A source of secret correlated randomness is an extremely useful resource in secure protocols:

A source of secret correlated randomness is an extremely useful resource in secure protocols:

A source of secret correlated randomness is an extremely useful resource in secure protocols:

A source of secret correlated randomness is an extremely useful resource in secure protocols:

In the computational world, can we compress correlated randomness?

A source of secret *correlated* randomness is an extremely useful resource in secure protocols:

Equality correlations can be *compressed* using a PRG:

A source of secret *correlated* randomness is an extremely useful resource in secure protocols:

Equality correlations can be *compressed* using a PRG:

correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Pseudorandom correlation generator: Gen $(1^{\lambda}) \rightarrow (\text{seed}_A, \text{seed}_B)$ such that (1) (Expand(A, seed_A), Expand(B, seed_B)) looks like n samples from the target correlation, and (2) Expand(A, seed_A) looks 'random conditioned on satisfying the

correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Pseudorandom correlation generator: Gen $(1^{\lambda}) \rightarrow (\text{seed}_A, \text{seed}_B)$ such that (1) (Expand(A, seed_A), Expand(B, seed_B)) looks like n samples from the target correlation, and (2) Expand(A, seed_A) looks 'random conditioned on satisfying the

Pseudorandom correlation generator: $Gen(1^{\lambda}) \rightarrow (seed_A, seed_B)$ such that (1) $(Expand(A, seed_A), Expand(B, seed_B))$ looks like *n* samples from the target correlation, and (2) $Expand(A, seed_A)$ looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Pseudorandom correlation generator: Gen $(1^{\lambda}) \rightarrow (\text{seed}_A, \text{seed}_B)$ such that (1) (Expand(A, seed_A), Expand(B, seed_B)) looks like n samples from the target correlation, and (2) Expand(A, seed_A) looks 'random conditioned on satisfying the correlation with $Expand(B, seed_B)$ ' to Bob (similar property w.r.t. Alice).

Preprocessing phase

Alice and Bob consume preprocessing material in a fast, non-cryptographic online phase.

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

A construction from LPN

0. Rewriting the 'many OTs correlation'

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

Because $s_b \oplus s_0 = b \cdot (s_0 \oplus s_1)$, Hence \overrightarrow{u} are the selection bits, \overrightarrow{w}_{B} are the s_{0} 's, \overrightarrow{w}_{A} are the outputs, and \overrightarrow{v} allows to recover the s_1 's.

A construction from LPN

0. Rewriting the 'many OTs correlation'

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

Because $s_b \oplus s_0 = b \cdot (s_0 \oplus s_1)$, Hence \overrightarrow{u} are the selection bits, \overrightarrow{w}_{B} are the s_{0} 's, \overrightarrow{w}_{A} are the output and \overrightarrow{v} allows to recover the s_1 's.

A construction from LPN

0. Rewriting the 'many OTs correlation'

1. Reduction to subfield-VOLE

hash functions gives (pseudorandom) OT correlations.

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

Because $s_b \oplus s_0 = b \cdot (s_0 \oplus s_1)$, Hence \overrightarrow{u} are the selection bits, \overrightarrow{w}_{B} are the s_{0} 's, \overrightarrow{w}_{A} are the outputs, and \overrightarrow{v} allows to recover the s_1 's.

A construction from LPN

0. Rewriting the 'many OTs correlation'

1. Reduction to subfield-VOLE

[IKNP03]: *subfied vector-OLE* correlation + *correlation-robust* hash functions gives (pseudorandom) OT correlations.

Intuition. the i-th (string-) OT is:

$$- (s_0, s_1) = (H(-w_{B,i}), H(x - w_{B,i}))$$

$$- (b, s_b) = (u_i, H(w_{A,i}))$$

where H is a correlation-robust hash function.

A quick reminder of what we want: Gen generates short correlated seeds which can be locally expanded into pseudorandom instances of a target correlation.

New target

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Three steps:

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Three steps:

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Three steps:

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Three steps:

A construction from LPN

- 0. Rewriting the 'many OTs correlation'
- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Three steps:

A construction from LPN

- 0. Rewriting the 'many OTs correlation'
- **1. Reduction to subfield-VOLE**
- $(\alpha : u_{\alpha} = 1)$ **2.** Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

- Write \overrightarrow{u} as a sum of *t* unit vectors $\overrightarrow{u}_1 \cdots \overrightarrow{u}_t$
- Apply the previous construction *t* times (with the same *x*)
- After expansion, the parties locally sum their shares:

$$\left(\bigoplus_{i=1}^{t} \overrightarrow{w}_{A}^{i}\right) \oplus \left(\bigoplus_{i=1}^{t} \overrightarrow{w}_{B}^{i}\right) = x \cdot \bigoplus_{i=1}^{t} \overrightarrow{u}_{i} = x \cdot \overrightarrow{u}$$

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- (α : $u_{\alpha} = 1$) **2.** Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \vec{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

The LPN assumption - primal

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - primal

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - primal

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \overrightarrow{u} using dual-LPN

3

The LPN assumption - dual

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

2

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

Construction for a pseudorandom vector \vec{u} using dual-LPN

3

The LPN assumption - dual

Construction for a pseudorandom vector \vec{u} using dual-LPN

3

A construction from LPN

- **0. Rewriting the 'many OTs correlation'**
- **1. Reduction to subfield-VOLE**
- 2. Constructing a PCG for subfield-VOLE

Three steps:

Construction for a random unit vector \overrightarrow{u} from puncturable pseudorandom functions

Construction for a random *t*-sparse vector \overrightarrow{u} via *t* parallel repetitions of (1)

seed_A | $\approx \lambda \cdot t$ $|\operatorname{seed}_B| \approx \lambda \cdot t \cdot \log n$

- λ is a security parameter, t is an LPN noise parameter, *n* is the vector length.
- Converted to *n* pseudorandom OTs via a correlation-robust hash function.

Placing the Assumption in the LPN Landscape

Remember this slide, shamefully stolen from Benny's talk on Monday?

Known Attacks

$$\exp(\frac{n}{\log\log n})$$
 [Lyu05]

uasi-Poly	Sub-Exp $exp(n^{1-\delta})$	Exp exp(n)
me SZK 2, worst->avg 9] [BLVW18]	PKE [Ale03]	Non-Trivial attacks + implication [BJMM12,AIK04]
log ² n n	$\frac{1}{n^{0.9}} \frac{1}{n^{0.5}} \frac{1}{n^{0.1}}$	0.25

Placing the Assumption in the LPN Landscape

Remember this slide, shamefully stolen from Benny's talk on Monday?

We use O(n) samples and noise λ/n . Therefore, we have exp. security *in* λ , and we do not view *n* as the security parameter anymore (since it is our target number of OTs)

Known Attacks

$$\exp(\frac{n}{\log\log n})$$
 [Lyu05]

uasi-Poly	(λ) Sub-Exp $exp(n^{1-\delta})$	Exp exp(n)
me oSZK 2, worst->avg 9] [BLVW18]	PKE [Ale03]	Non-Trivial attacks + implication [BJMM12,AIK04]
$\frac{\log^2 n}{n}$	$\frac{1}{n^{0.9}} \frac{1}{n^{0.5}} \frac{1}{n^{0.1}}$	0.25

 $|\operatorname{seed}_A| \approx \lambda \cdot t$ $|\operatorname{seed}_B| \approx \lambda \cdot t \cdot \log n$

- λ is a security parameter, t is an LPN noise parameter, n is the vector length.
- Converted to *n* pseudorandom OTs via a correlation-robust hash function.

 $|\text{seed}_B| \approx \lambda \cdot t \cdot \log n$ seed_A | $\approx \lambda \cdot t$

- λ is a security parameter, t is an LPN noise parameter, *n* is the vector length.
- Converted to *n* pseudorandom OTs via a correlation-robust hash function.

 $|\operatorname{seed}_A| \approx \lambda \cdot t$ $|\operatorname{seed}_B| \approx \lambda \cdot t \cdot \log n$

- λ is a security parameter, *t* is an LPN noise parameter, *n* is the vector length.
- Converted to *n* pseudorandom OTs via a correlation-robust hash function.

We need to use *variants* of LPN, where multiplication by H is (much) faster, ideally linear-time.

We want: computing

is *fast*, and the code generated by

is LPN-friendy

Candidate from the literature: quasi-cyclic codes (i.e., a code such that a cyclic shift by s of a codeword is still a codeword, for some value s.

- BIKE, HQC, and LEDA, and are considered well studied)
- Fast multiplication: not too bad due to Fast Fourier Transform, $O(n \cdot \log n)$

• Resistant against LPN attacks: highly plausible V (was used in the design of several NIST proposals, e.g.

Candidate from the literature: quasi-cyclic codes (i.e., a code such that a cyclic shift by s of a codeword is still a codeword, for some value s.

- BIKE, HQC, and LEDA, and are considered well studied)
- Fast multiplication: not too bad due to Fast Fourier Transform, $O(n \cdot \log n)$

 $O(n \cdot \log n)$ is not too bad, but when n is huge, as in our scenario, it still gives a significant slowdown... Unfortunately, no existing well-understood 'LPN-friendly' candidate has linear time multiplication by H. So... What do we do?

We try to understand what makes a code 'LPN-friendly', and we craft our own!

• Resistant against LPN attacks: highly plausible V (was used in the design of several NIST proposals, e.g.

A tremendous number of attacks on LPN have been published...

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03]
 Stern's variant [ICIT:Stern88]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

• Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN have been published...

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03] Stern's variant [ICIT:Stern88]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN have been published...

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03] Stern's variant [ICIT:Stern88]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

- Information Set Decoding Attacks
- Prange's algorithm [Prange62]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]
- Other Attacks
- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN have been published...

- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

The adversary wins in the distribution induced by

(over a random choice of secret and sparse noise) is non-negligibly*biased*.

We have a sum of two distributions:

Induced by the *noise vector*

_			

We have a sum of two distributions:

Induced by the *noise vector*

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant c such that every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{s} + \vec{e}$ from random.

Proof: We consider two complementary cases for any possible attack vector v':

We have a sum of two distributions:

Induced by the *noise vector*

- every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{s} + \vec{e}$ from random.

Proof: We consider two complementary cases for any possible attack vector v':

I. $HW(\overrightarrow{v}) \leq c \cdot n$

If every subset of w rows of G is linearly independent, then the distribution of $(\overrightarrow{v} \cdot G) \cdot \overrightarrow{s}$ is truly random (as \overrightarrow{s}) is random and $\overrightarrow{v} \cdot G$ cannot be 0).

We have a sum of two distributions:

Induced by the *noise vector*

- **Claim:** Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant c such that every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{s} + \vec{e}$ from random.

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant c such that every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{s} + \vec{e}$ from random.

Proof: We consider two complementary cases for any possible attack vector \vec{v} :

I. $HW(\overrightarrow{v}) \leq c \cdot n$

If every subset of w rows of G is linearly independent, then the distribution of $(\overrightarrow{v} \cdot G) \cdot \overrightarrow{s}$ is truly random (as \overrightarrow{s} is random and $\overrightarrow{v} \cdot G$ cannot be 0).

We have a sum of two distributions:

Induced by the *noise vector*

II. $HW(\overrightarrow{v}) \ge c \cdot n$

The noise vector has t randomly chosen nonzero coordinates out of *n* entries. Each of them *hits* a nonzero entry of \overrightarrow{v} with proba $\geq c \cdot n/n = c$, hence:

$$\Pr[\overrightarrow{v} \cdot \overrightarrow{e} = 1] \ge \frac{1}{2} + (1-c)^t \approx \frac{1}{2} + e^{-ct}$$

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant c such that every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{s} + \vec{e}$ from random.

Proof: We consider two complementary cases for any possible attack vector \vec{v} :

I. $HW(\overrightarrow{v}) \leq c \cdot n$

If every subset of w rows of G is linearly independent, then the distribution of $(\overrightarrow{v} \cdot G) \cdot \overrightarrow{s}$ is truly random (as \overrightarrow{s} is random and $\overrightarrow{v} \cdot G$ cannot be 0).

We have a sum of two distributions:

Induced by the *noise vector*

Protects against *heavy* linear tests

II. $HW(\overrightarrow{v}) \ge c \cdot n$

The noise vector has t randomly chosen nonzero coordinates out of *n* entries. Each of them *hits* a nonzero entry of \overrightarrow{v} with proba $\geq c \cdot n/n = c$, hence:

$$\Pr[\overrightarrow{v} \cdot \overrightarrow{e} = 1] \ge \frac{1}{2} + (1-c)^t \approx \frac{1}{2} + e^{-ct}$$

Every subset of O(n) rows of G is linearly independent \iff the left-kernel of G does not contain nonzero vector of weight less than O(n) \iff the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear minimum distance

Every subset of O(n) rows of G is linearly independent \iff the left-kernel of G does not contain nonzero vector of weight less than O(n)minimum distance

'Provable' candidates: recursive codes such as GDP, Spielman, Druk-Ishai (lack concrete efficiency). Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes) More to come in the future

 \iff the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear

•			
the			

Every subset of O(n) rows of G is linearly independent \iff the left-kernel of G does not contain nonzero vector of weight less than O(n)minimum distance

Every subset of O(n) rows of G is linearly independent \iff the left-kernel of G does not contain nonzero vector of weight less than O(n)minimum distance

Every subset of O(n) rows of G is linearly independent \iff the left-kernel of G does not contain nonzero vector of weight less than O(n)minimum distance

Every subset of O(n) rows of G is linearly independent \iff the left-kernel of G does not contain nonzero vector of weight less than O(n)minimum distance

In a sense, this is a (very partial) converse to the result, described by Benny last Monday, that this condition is also a *necessary* condition.

(Benny's slide)

Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes)
Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes)

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Heuristic / experimental candidates: [CRYPTO:CRS21] (based on Tillick-Zémor LDPC codes)

Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes)

Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes)

Core idea: use a sparse M which can be brought in approximate lower triangular form:

- We have fast encoder for such parity-check matrices
- We have good insights on the minimum distance of the associated code, e.g. Tillich-Zémor, ISIT'06

Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes)

Core idea: use a sparse M which can be brought in approximate lower triangular form:

- We have fast encoder for such parity-check matrices
- We have good insights on the minimum distance of the associated code, e.g. Tillich-Zémor, ISIT'06

Heuristic / experimental candidates: [CRYPTO: CRS21] (based on Tillick-Zémor LDPC codes)

Core idea: use a sparse M which can be brought in approximate lower triangular form:

- We have fast encoder for such parity-check matrices
- We have good insights on the minimum distance of lacksquarethe associated code, e.g. Tillich-Zémor, ISIT'06

 \implies encode in time $O(n + g^2)$, linear if $g < \sqrt{n}$.

Thank You for Your Attention!

Questions?

Backup Slides

Secure Computation from Oblivious Transfer

Warm-up I: 2-Party Product Sharing

 (y_1, y_2) random conditioned on $y_1 \oplus y_2 = x_1 x_2$

Warm-up II: Variant

This time, Alice and Bob start with shares of values (x,y), and want to compute shares of the product x.y

Step-by Step Solution

- We use an OT functionality where Alice is the receiver, and her selection bit is her input x_2
- What should be Bob's input? Let's work out the equation:

Solution

