Non-Interactive Secure Computation of Inner-Product from LPN and LWE

Geoffroy Couteau, Maryam Zarezadeh

V Université de Paris

A very appealing interaction pattern:

- *n* parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

A very appealing interaction pattern:

- *n* parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

A very appealing interaction pattern:

- *n* parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

A very appealing interaction pattern:

- *n* parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

A very appealing interaction pattern:

- *n* parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- *n* parties broadcast an *encoding* of their input
- Pairs (P_i, P_j) can compute $f_i(x_i, x_j)$ and $f_j(x_i, x_j)$ from their state and the other party's encoding
- Avoids the $\Omega(n^2)$ overhead

This Work

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- *n* parties broadcast an *encoding* of their input
- Pairs (P_i, P_j) can compute $f_i(x_i, x_j)$ and $f_j(x_i, x_j)$ from their state and the other party's encoding
- Avoids the $\Omega(n^2)$ overhead

This Work

A very appealing interaction pattern:

- *n* parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- *n* parties broadcast an *encoding* of their input
- Pairs (P_i, P_j) can compute $f_i(x_i, x_j)$ and $f_j(x_i, x_j)$ from their state and the other party's encoding
- Avoids the $\Omega(n^2)$ overhead

This Work

- Non-interactive MPC for *shares of inner products:* $f_i(x_i, x_j), f_i(x_i, x_j)$ form shares of $\langle x_i, x_j \rangle$ over \mathbb{F}
- Reconstructing the result = sending a single element of \mathbb{F}

Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
- • •

Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
- • •

Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
- • •

Toy Example: Biometrics

- *n* clients and *m* servers with a fingerprint stored.
- Ahead of time, each party publishes an encoding of its fingerprint.

Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours, SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics

Toy Example: Biometrics

- *n* clients and *m* servers with a fingerprint stored.
- Ahead of time, each party publishes an encoding of its fingerprint.
- Later, a client C_i can authenticate to a server S_i by locally computing and sending his share of the Hamming distance, a single element of \mathbb{F} .

LPN and LWE — Primal Form

$$\mathsf{LPN}(\mathbb{F}_{2}): \mathbf{G} \leftarrow_{\$} \mathbb{F}_{2}^{m \times n},$$
$$\mathsf{LPN}(\mathbb{F}_{p}): \mathbf{G} \leftarrow_{\$} \mathbb{F}_{p}^{m \times n},$$

 $\begin{array}{c} \leftarrow_{\$} \mathbb{F}_{2}^{n}, & \leftarrow_{\$} \operatorname{Ber}(\mathbb{F}_{2})^{n} & \overbrace{}^{\text{`Sparse'}} \\ \leftarrow_{\$} \mathbb{F}_{p}^{n}, & \leftarrow_{\$} \operatorname{Ber}(\mathbb{F}_{p})^{n} & \end{array}$

LPN and LWE — Dual Form

K

Bob computes:

Alice computes:

Bob computes:

Alice computes:

Bob computes:

We are making progress — but s has to be random for primal LPN to hold!

How to embed Alice's input in s?

Idea: split H as $H_0 | H_1$

 S_0^{\perp}

The protocol has t^2/n correctness error.

In MPC, correctness errors translate to *leakage* when a 'detectable' error occurs: the server learns an equation $\langle v, r \rangle$ with v known and r the noise vector.

 \implies leaks $\approx N \cdot t^2/n$ linear equations in r if the client interacts with N servers.

 \implies still secure under the LPN with leakage assumption (equivalent to standard LPN, but with a loss)

Multiparty Inner Product with Leakage

The protocol has t^2/n correctness error.

In MPC, correctness errors translate to *leakage* when a 'detectable' error occurs: the server learns an equation $\langle v, r \rangle$ with v known and r the noise vector.

 \implies leaks $\approx N \cdot t^2/n$ linear equations in r if the client interacts with N servers.

 \implies still secure under the LPN with leakage assumption (equivalent to standard LPN, but with a loss)

Alternatives

The above is fine when N is not too large. For large N, or when overwhelming correctness matters (e.g. for biometric authentication), two alternatives:

- 1. We give an LWE-based variant with negligible error
- 2. We describe a way to remove errors via a sublinearcommunication preprocessing phase

Multiparty Inner Product with Leakage

 $\lceil (p/q) \cdot K' \mid \mod p$

Preprocessing phase

Functionality

Samples *t*-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

Preprocessing phase

Functionality

Samples *t*-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

(r_1, s_1)

Online phase

Preprocessing phase

Functionality

Samples *t*-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

(r_1, s_1)

Online phase

Output

$$-s_0 + \langle s, pk_0 \rangle - s_1$$

 $r_0, r_1 \rangle + (s_0 + s_1)$

Preprocessing phase

Implementing the preprocessing

Functionality

Samples *t*-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

Preprocessing phase

Implementing the preprocessing Write $r_{\sigma} = \sum_{i=1}^{r} r_{\sigma}^{(i)}$ where the $r_{\sigma}^{(i)}$ are unit vectors $0 \cdots 0 v_{\sigma}^{(i)} 0 \cdots 0$ Then: $\langle r_0, r_1 \rangle = \sum_{i=1}^t \sum_{j=1}^t \langle r_0^{(i)}, r_1^{(j)} \rangle = \sum_{i=1}^t \sum_{j=1}^t \left[\underbrace{k_{\sigma}^{(i)} = k_{\sigma}^{(j)}}_{\text{Secure Equality Test}} \cdot \underbrace{v_0^{(i)} v_1^{(j)}}_{\text{OLE}} \right]$

 \implies s_0, s_1 can be securely computed using $O(t^2 \cdot \log n)$ communication

Functionality

Samples *t*-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

(r_1, s_1)

Preprocessing phase

 \implies s_0, s_1 can be securely computed using $O(t^2 \cdot \log n)$ communication

$$r_{\sigma} = 0 \cdots 0 v_1 0 \cdots 0 0 \cdots 0 v_2 0 \cdots 0 0 \cdots 0 v_3 0 \cdots 0 0 \cdots 0 v_4 0 \cdots 0$$

Functionality

Samples *t*-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

(r_1, s_1)

Implementing the preprocessing

Improved version: using LPN with *regular noise* brings the cost down to $O(t \cdot \log n)$

In the malicious setting, Alice and Bob must prove that pk_0 , pk_1 are well-formed

In the malicious setting, Alice and Bob must prove that pk_0 , pk_1 are well-formed

In the malicious setting, Alice and Bob must prove that pk_0 , pk_1 are well-formed

In the malicious setting, Alice and Bob must prove that pk_0 , pk_1 are well-formed

We introduce a new efficient ZKPoK for LPN relations, with communication $O(t \cdot \log n)$

In the malicious setting, Alice and Bob must prove that pk_0 , pk_1 are well-formed

Idea

 \implies we use these techniques to *authenticate* the noise vectors with a MAC Δ \implies we use the MAC to check the correct computation of the pk s, al la SPDZ.

We introduce a new efficient ZKPoK for LPN relations, with communication $O(t \cdot \log n)$

- Recent works on *pseudorandom correlation generator* show how to distribute shares of $\Delta \cdot r$ where $r \in \mathbb{F}_p^n$ is *t*-sparse, and $\Delta \in \mathbb{F}_{p^k}$, via *function secret sharing* (which exist under OWF)

Thank you for your attention!

Questions?