Non-Interactive Secure Computation of Inner-Product from LPN and LWE

Geoffroy Couteau, Maryam Zarezadeh
Non-Interactive Key Exchange

A very appealing interaction pattern:
- \(n \) parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the \(\Omega(n^2) \) overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work
Non-Interactive Key Exchange

A very appealing interaction pattern:
• n parties simultaneously broadcast a single message
• All pairs of parties get a shared private key
• Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work

$K_{14} \leftarrow \text{Key}(sk_1, pk_4)$

$K_{14} \leftarrow \text{Key}(sk_4, pk_1)$
A very appealing interaction pattern:
• n parties simultaneously broadcast a single message
• All pairs of parties get a shared private key
• Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange
A very appealing interaction pattern:
- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange
Non-Interactive Key Exchange

A very appealing interaction pattern:
• n parties simultaneously broadcast a single message
• All pairs of parties get a shared private key
• Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work
Non-Interactive Key Exchange

A very appealing interaction pattern:
- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?
- n parties broadcast an *encoding* of their input
- Pairs (P_i, P_j) can compute $f_i(x_i, x_j)$ and $f_j(x_i, x_j)$ from their state and the other party’s encoding
- Avoids the $\Omega(n^2)$ overhead

This Work
Non-Interactive Key Exchange

A very appealing interaction pattern:
• n parties simultaneously broadcast a single message
• All pairs of parties get a shared private key
• Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?
• n parties broadcast an encoding of their input
• Pairs (P_i, P_j) can compute $f_i(x_i, x_j)$ and $f_j(x_i, x_j)$ from their state and the other party’s encoding
• Avoids the $\Omega(n^2)$ overhead

This Work

\[
f_1(x_1, x_4) = \text{Out}(\text{st}_1, \text{Enc}(x_4))
\]

\[
f_1(x_1, x_4) = \text{Out}(\text{st}_4, \text{Enc}(x_1))
\]
Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega(n^2)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- n parties broadcast an encoding of their input
- Pairs (P_i, P_j) can compute $f_i(x_i, x_j)$ and $f_j(x_i, x_j)$ from their state and the other party’s encoding
- Avoids the $\Omega(n^2)$ overhead

This Work

- Non-interactive MPC for shares of inner products: $f_i(x_i, x_j), f_j(x_i, x_j)$ form shares of $\langle x_i, x_j \rangle$ over \mathbb{F}
- Reconstructing the result = sending a single element of \mathbb{F}
Non-Interactive Inner Product: Applications

Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours, SVM, rule mining…)
- Linear algebra
- Similarity measure
- Simple statistics
- …
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours, SVM, rule mining…)
- Linear algebra
- Similarity measure
- Simple statistics
- …
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours, SVM, rule mining…)
- Linear algebra
- Similarity measure
- Simple statistics
- …

Toy Example: Biometrics

- n clients and m servers with a fingerprint stored.
- Ahead of time, each party publishes an encoding of its fingerprint.
Non-Interactive Inner Product: Applications

Inner products is a simple, but very useful function:
- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours, SVM, rule mining…)
- Linear algebra
- Similarity measure
- Simple statistics
- …

Toy Example: Biometrics

- n clients and m servers with a fingerprint stored.
- Ahead of time, each party publishes an encoding of its fingerprint.
- Later, a client C_i can authenticate to a server S_j by locally computing and sending his share of the Hamming distance, a single element of \mathbb{F}.
Preliminaries: LPN and LWE

LPN and LWE — Primal Form

\[
\begin{pmatrix}
G \\
G
\end{pmatrix} + \text{Noise} \approx \$
\]

Random matrix Short secret Noise
Preliminaries: LPN and LWE

LPN and LWE — Primal Form

\[
(G, \text{Random matrix}), (G, \text{Short secret}), (\text{Noise}) \approx \mathbb{F}_2^n
\]

LPN\((\mathbb{F}_2)\):
\[G \leftarrow \mathbb{F}_2^{m \times n}, \quad \mathbb{F}_2^n, \quad \text{Ber}(\mathbb{F}_2)^n\]

LPN\((\mathbb{F}_p)\):
\[G \leftarrow \mathbb{F}_p^{m \times n}, \quad \mathbb{F}_p^n, \quad \text{Ber}(\mathbb{F}_p)^n\]
Preliminaries: LPN and LWE

LPN and LWE — Primal Form

\[
\left(\begin{array}{c} G \\ G \end{array} \right) \cdot + \approx \$
\]

Random matrix \quad Short secret \quad Noise

LPN(\mathbb{F}_2):

\[G \leftarrow \mathbb{F}_2^{m \times n}, \quad _ \leftarrow \mathbb{F}_2^n, \quad _ \leftarrow \text{Ber}(\mathbb{F}_2)^n \]

‘Sparse’

LPN(\mathbb{F}_p):

\[G \leftarrow \mathbb{F}_p^{m \times n}, \quad _ \leftarrow \mathbb{F}_p^n, \quad _ \leftarrow \text{Ber}(\mathbb{F}_p)^n \]

LWE(\mathbb{F}_p):

\[G \leftarrow \mathbb{F}_p^{m \times n}, \quad _ \leftarrow \mathbb{F}_p^n, \quad _ \leftarrow [-B, B]^n \]

‘Small’
Preliminaries: LPN and LWE

LPN and LWE — Dual Form

\[H \cdot \begin{pmatrix} \cdot \quad \cdot \quad \cdot \quad \cdot \quad + \end{pmatrix} \approx \$

LPN(\mathbb{F}_2):
\[
G \leftarrow \mathbb{F}_2^{m \times n}, \quad \mathbb{F}_2^n \leftarrow \mathbb{F}_2^n, \quad \mathbb{Ber}(\mathbb{F}_2)^n \leftarrow \mathbb{Ber}(\mathbb{F}_2)^n
\]

LPN(\mathbb{F}_p):
\[
G \leftarrow \mathbb{F}_p^{m \times n}, \quad \mathbb{F}_p^n \leftarrow \mathbb{F}_p^n, \quad \mathbb{Ber}(\mathbb{F}_p)^n \leftarrow \mathbb{Ber}(\mathbb{F}_p)^n
\]

LWE(\mathbb{F}_p):
\[
G \leftarrow \mathbb{F}_p^{m \times n}, \quad \mathbb{F}_p^n \leftarrow \mathbb{F}_p^n, \quad \mathbb{Ber}(\mathbb{F}_p)^n \leftarrow [-B, B]^n
\]

\text{‘Sparse’}
\text{‘Small’}
Preliminaries: LPN and LWE

LPN and LWE — Dual Form

\[
\begin{pmatrix}
H \\
H
\end{pmatrix}
\approx$

Random matrix

Noise

LPN(\mathbb{F}_2): $H \leftarrow \mathbb{F}_2^{m \times n}$, $\leftarrow \mathbb{B}er(\mathbb{F}_2)^n$

LPN(\mathbb{F}_p): $H \leftarrow \mathbb{F}_p^{m \times n}$, $\leftarrow \mathbb{B}er(\mathbb{F}_p)^n$

LWE(\mathbb{F}_p): $H \leftarrow \mathbb{F}_p^{m \times n}$, $\leftarrow \mathbb{B}er([-B, B]^n)$

‘Sparse’

‘Small’
Alekhnovich Key Exchange

\[H^T \cdot r_0 = \text{pk}_0 \]

\[H \cdot s + r_1 = \text{pk}_1 \]

\[s' \cdot \text{pk}_0 = K' \]
Alekhnovich Key Exchange

\[H^T \cdot r_0 = p_{k_0} \]

\[H \cdot s + r_1 = p_{k_1} \]

Correctness

Claim: \(\Pr[K = K'] \approx t^2/n \ll 1 \)

\[K' = r_0^T \cdot (H \cdot s + r_1) = (H^T \cdot r_0)^T \cdot s + r_0^T \cdot r_1 \]

\[= p_{k_0}^T \cdot s + r_0^T \cdot r_1 = K + e \]

Where \(\Pr[e = 1] \approx t^2/n \ll 1 \)
Alekhnovich Key Exchange

\[H^\top \cdot r_0 = p_{k_0} \]

\[H \cdot s + r_1 = p_{k_1} \]

Correctness

Claim: \(\Pr[K = K'] \approx t^2/n \ll 1 \)

\[K' = r_0^\top \cdot (H \cdot s + r_1) = (H^\top \cdot r_0)^\top \cdot s + r_0^\top \cdot r_1 = p_{k_0}^\top \cdot s + r_0^\top \cdot r_1 = K + e \]

Where \(\Pr[e = 1] \approx t^2/n \ll 1 \)
Alekhnovich Key Exchange

\[H^\top \cdot r_0 = p_{k_0} \]

\[H \cdot s + r_1 = p_{k_1} \]

Correctness

Claim: Pr[\(K = K'\)] \(\approx t^2/n \ll 1\)

\[K' = r_0^\top \cdot (H \cdot s + r_1) = (H^\top \cdot r_0)^\top \cdot s + r_0^\top \cdot r_1 \]

\[= p_{k_0} \cdot s + r_0^\top \cdot r_1 = K + e \]

Where Pr[\(e = 1\)] \(\approx t^2/n \ll 1\)
Alekhnovich Key Exchange

\[H^\top \cdot r_0 = pk_0 \]

\[H \cdot s + r_1 = pk_1 \]

Correctness

Claim: \(\Pr[K = K'] \approx \frac{t^2}{n} \ll 1 \)

\[K' = r_0^\top \cdot (H \cdot s + r_1) = (H^\top \cdot r_0)^\top \cdot s + r_0^\top \cdot r_1 = pk_0 \cdot s + r_0 \cdot r_1 = K + e \]

Where \(\Pr[e = 1] \approx \frac{t^2}{n} \ll 1 \)
Alekhnovich Key Exchange

\[H^T \cdot r_0 = n \cdot H \cdot s + r_1 = \]

Hamming weight \(t \)

Correctness

Claim: \(\Pr[K = K'] \approx \frac{t^2}{n} \ll 1 \)

\[K' = r_0^T \cdot (H \cdot s + r_1) = (H^T \cdot r_0)^T \cdot s + r_0^T \cdot r_1 = \]

\[= pk_0^T \cdot s + r_0^T \cdot r_1 = K + e \]

Where \(\Pr[e = 1] \approx \frac{t^2}{n} \ll 1 \)
Alekhnovich Key Exchange

Dual LPN

Primal LPN

\[H^T \cdot r_0 = s \cdot \cdot pk_0 \]

\[H \cdot s + r_1 = pk_1 \]

\[r_0 \cdot s' = pk_0 \]

\[K' \]

\[K \]

Security

Follows from dual LPN + primal LPN

(The proof is standard)
Embedding an Inner Product in Alekhnovich’s Key Exchange

\[H^\top \cdot r_0 = p_{k_0} \]

\[H \cdot s + r_1 = p_{k_1} \]

\[r_0 \cdot K' \]

\[s' \cdot K \]
Since the parties are computing an inner product to get K, could we embed an inner product computation?
Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get K, could we embed an inner product computation?

Warmup attempt: only Bob has an input

Input: x

Bob computes: $x - H^T \cdot r_0 = pk_0$

Alice computes: $H \cdot s + r_1 = pk_1$
Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get K, could we embed an inner product computation?

Warmup attempt: only Bob has an input

Bob computes:

Alice computes:

$s^T \cdot pk_0 = \frac{1}{2}$
Since the parties are computing an inner product to get K, could we embed an inner product computation?

Warmup attempt: only Bob has an input

Bob computes:

$$r_0 \cdot pk_1 = -s^t \cdot pk_0 + s^t \cdot x + e$$

Alice computes:

$$s^t \cdot pk_0$$
Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get K, could we **embed** an inner product computation?

Warmup attempt: only Bob has an input

Bob computes:

$$r_0 \cdot pk_0 - K' = -s^T \cdot pk_0 + s^T \cdot x + e$$

Alice computes:

$$H^T \cdot r_0 = pk_0$$

K and K' form (noisy) additive share of $\langle x, s \rangle$

We are making progress — but s has to be random for primal LPN to hold!
Embedding an Inner Product in Alekhnovich’s Key Exchange

How to embed Alice’s input in s?
Embedding an Inner Product in Alekhnovich’s Key Exchange

Idea: split H as $H_0 | H_1$
Embedding an Inner Product in Alekhnovich’s Key Exchange

Idea: split H as $H_0 \ | H_1$

- **Input:** x

 - $H^\top \cdot r_0 = pk_0$

 - $H \cdot s = H_0 \cdot s_0 + H_1 \cdot s_1$

- **Input:** y

 - $y \cdot s_1 = s_1$

- $H_0 \cdot s_0 + H_1 \cdot s_1 = H \cdot s$

- $H^\top \cdot r_0 = pk_0$

- $H_0 \cdot s_0 + H_1 \cdot s_1 = H \cdot s$

- $y \cdot s_1 = s_1$
Embedding an Inner Product in Alekhnovich’s Key Exchange

Idea: split H as $H_0 | H_1$

Input: x

$H^\top \cdot r_0 = pk_0$

$H \cdot s_0 + = H_0 \cdot s_0 + H_1 \cdot s_1$

Input: $y = s_1$

K

$s_0^\top y^+$
Embedding an Inner Product in Alekhnovich’s Key Exchange

Idea: split H as $H_0 \mid H_1$

Input: x

$H^\top \cdot r_0 = p_{k_0}$

$H \cdot y = r_1 + p_{k_1}$

Input: $y = s_1$

$H \cdot s = H_0 \cdot s_0 + H_1 \cdot s_1$

$K' \cdot r_0 = p_{k_1}$

$K \cdot y^\top = \cdot p_{k_0}$
Embedding an Inner Product in Alekhnovich’s Key Exchange

\[x \rightarrow H^\top \cdot r_0 = pk_0 \rightarrow H \cdot y + r_1 = pk_1 \]

Idea: split \(H \) as \(H_0 | H_1 \)

\[K' = r_0^\top \cdot pk_s \]

\[K = s_0^\top \cdot y^\top \cdot x + e \]

Input: \(x \)

Input: \(y = s_1 \)
Embedding an Inner Product in Alekhnovich’s Key Exchange

Input: x

Idea: split H as $H_0 | H_1$

Security

Use primal LPN with matrix H_0 for Alice, and dual LPN with matrix H^\top for Bob

$H^\top \cdot r_0 = pk_0$

$H \cdot s = H_0 \cdot s_0 + H_1 \cdot s_1$

$K' = -r_0 \cdot pk_x$

$K = s_0^\top \cdot y^\top + s_1^\top \cdot y^\top + e$

$y^\top \cdot x = s_0^\top \cdot y^\top \cdot x + s_1^\top \cdot y^\top \cdot x$

Input: $y = s_1$
Embedding an Inner Product in Alekhnovich’s Key Exchange

Efficiency

Communication: $2m$ from Bob and $4m$ from Alice with reasonable parameters ($m = |x| = |y|$), $(1 + \varepsilon)m$ from each party asymptotically (which is optimal).

Computation: cost dominated by $v \rightarrow H \cdot v$ ($\iff v \rightarrow H^T \cdot v$), can be $O(m \cdot \log m)$ (LPN with quasi-cyclic codes, standard) or even $O(m)$ (Druk-Ishai codes, slightly more exotic).

Security

Use primal LPN with matrix H_0 for Alice, and dual LPN with matrix H^T for Bob.
The protocol has t^2/n correctness error.

⚠️ In MPC, correctness errors translate to leakage when a ‘detectable’ error occurs: the server learns an equation $\langle v, r \rangle$ with v known and r the noise vector.

\implies leaks $\approx N \cdot t^2/n$ linear equations in r if the client interacts with N servers.

\implies still secure under the **LPN with leakage** assumption (equivalent to standard LPN, but with a loss)
The protocol has t^2/n correctness error.

⚠️ In MPC, correctness errors translate to leakage when a ‘detectable’ error occurs: the server learns an equation $\langle v, r \rangle$ with v known and r the noise vector.

\implies leaks $\approx N \cdot t^2/n$ linear equations in r if the client interacts with N servers.

\implies still secure under the LPN with leakage assumption (equivalent to standard LPN, but with a loss)

Alternatives

The above is fine when N is not too large. For large N, or when overwhelming correctness matters (e.g. for biometric authentication), two alternatives:

1. We give an LWE-based variant with negligible error
2. We describe a way to remove errors via a sublinear-communication preprocessing phase
A Variant under LWE

\[H^\top \cdot r_0 = s_0 + r_1 = y \]
A Variant under LWE

\[x \in \mathbb{Z}_p \]

\[(q/p) \cdot x \]

\[\in \mathbb{Z}_q^{k \times n} \]

\[H^\top \]

\[H \cdot r_0 \]

\[= \]

\[y \in \mathbb{Z}_p \]

\[\cdot s_0 \]

\[+ \]

\[r_1 \]

\[= \]

\[y \cdot (q/p) \]

\[\cdot \]

\[p_{k_0} \]

\[\cdot \]

\[p_{k_1} \]
A Variant under LWE

\[x \in \mathbb{Z}_p \]

\[H^{\top} \cdot r_0 = p_{k_0} \]

\[\ell \in \mathbb{Z}_q^{k \times n} \]

\[y \in \mathbb{Z}_p \]

\[(q/p) \cdot x \]

\[H \cdot y \cdot (q/p) + r_1 = p_{k_1} \]

\[K' \]

\[r_0^\top \cdot p_{k_0} = (q/p) \cdot y^\top \cdot x \]

\[k \]

\[(q/p) \cdot x \]

\[(q/p) \cdot s_0^\top \cdot y^\top \cdot 0 + e \]
A Variant under LWE

\[x \in \mathbb{Z}_p \]

\[H^\top \]

\[r_0 \]

\[y \in \mathbb{Z}_p \]

\[e = r_0^\top \cdot r_1 \text{ with } r_0, r_1 \text{ in } [-B, B]^n \]

\[e \leq n \cdot B^2 \]
A Variant under LWE

\[\begin{align*}
 x \in \mathbb{Z}_p & \quad \in \mathbb{Z}_q^{k \times n} \\
 (q/p) \cdot x & \quad y \cdot (q/p) \quad r_1 & \quad = \quad y \in \mathbb{Z}_p \\
 H^\top & \quad s_0 & \quad + & \quad = \\
 r_0 & \quad \in \mathbb{Z}_p & \quad & \\
 H & \quad \cdot & \quad & \\
 \cdot & \quad s_0 & \quad + & \quad = \\
 r_0 & \quad \cdot & \quad & \\
 (q/p) \cdot y^\top & \quad 0 & \quad & \\
 (q/p) \cdot x & \quad \in \mathbb{Z}_p & \quad & \\
 (q/p) \cdot & \quad & \in \mathbb{Z}_p & \\
 s_0^\top & \quad x & \quad & \\
 y^\top & \quad 0 & \quad & \\
 x & \quad & \in \mathbb{Z}_p & \\
 r_0^\top & \quad r_1 & \quad & \\
 -K & \quad & \in \mathbb{Z}_p & \\
 K' & \quad & \in \mathbb{Z}_p & \\
 \Rightarrow e \leq n \cdot B^2 & \quad & \Rightarrow e \leq n \cdot B^2 & \\
\end{align*} \]

Rounding Lemma: if \(q/(p \cdot |e|) \geq \lambda^{o(1)} \), then \([(p/q) \cdot K'] \mod p \) and \([(p/q) \cdot K'] \mod p \) form additive shares of \(\langle x, y \rangle \) with proba \(1 - \text{negl}(\lambda) \).
A Variant under LWE

\[x \in \mathbb{Z}_p \quad \Rightarrow \quad \begin{pmatrix} (q/p) \cdot x \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} = \begin{pmatrix} H^\top \end{pmatrix} \cdot s_0 \cdot y + e \]

\[e = r_0^\top \cdot r_1 \text{ with } r_0, r_1 \in [-B, B]^n \quad \Rightarrow e \leq n \cdot B^2 \]

Rounding Lemma: if \(q/(p \cdot |e|) \geq \lambda^{o(1)} \), then \([(p/q) \cdot K'] \mod p \) and \([(p/q) \cdot K'] \mod p \) form additive shares of \(\langle x, y \rangle \) with proba \(1 - \text{negl}(\lambda) \).
A Variant under LWE

\[
\begin{align*}
x &\in \mathbb{Z}_p, \\
\frac{q}{p} \cdot x &\in \mathbb{Z}_q^{k \times n} \\
H &\cdot r_0 = s_0^{p_{k_0}} \\
H &\cdot y \cdot \frac{q}{p} \cdot r_1 = s_0^{p_{k_1}} \\
y &\in \mathbb{Z}_p
\end{align*}
\]

\[
\begin{align*}
(r_0^\top \cdot r_1 &\text{ with } r_0, r_1 \in [-B, B]^n \\
e &\le n \cdot B^2
\end{align*}
\]

Rounding Lemma: if \(q/(p \cdot |e|) \ge \lambda^{o(1)} \), then \([(p/q) \cdot K'] \mod p\) and \([(p/q) \cdot K'] \mod p\) form additive shares of \(\langle x, y \rangle\) with proba \(1 - \text{negl}(\lambda)\).

Output

\([(p/q) \cdot K'] \mod p\]

Negligible correctness error & leakage

Larger communication overhead

Output

\([(p/q) \cdot K] \mod p\)
Removing Errors via Preprocessing

Preprocessing phase

Functionality

Samples t-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$
Removing Errors via Preprocessing

Preprocessing phase

Functionality
Samples t-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

Online phase

$0 - H^T \cdot r_0 = p_{k_0}$

$H \cdot (s_0 + y) = r_1 + p_{k_1}$
Removing Errors via Preprocessing

Preprocessing phase

Functionality

Samples t-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

Online phase

Output

$\langle r_0, pk_1 \rangle + s_0$ = $\langle x, y \rangle - \langle r_0, r_1 \rangle + (s_0 + s_1) = \langle x, y \rangle$

Output

$\langle s, pk_0 \rangle + s_1$
Removing Errors via Preprocessing

Preprocessing phase

Functionality
Samples ℓ-sparse vectors \((r_0, r_1)\) and set \((s_0, s_1) ← \text{Share}(⟨r_0, r_1⟩)\)

Implementing the preprocessing
Removing Errors via Preprocessing

Preprocessing phase

Functionality
Samples \(t \)-sparse vectors \((r_0, r_1)\) and set \((s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)\)

Implementing the preprocessing

Write \(r_\sigma = \sum_{i=1}^{t} r_\sigma^{(i)} \) where the \(r_\sigma^{(i)} \) are unit vectors

\[
\langle r_0, r_1 \rangle = \sum_{i=1}^{t} \sum_{j=1}^{t} \langle r_0^{(i)}, r_1^{(j)} \rangle = \sum_{i=1}^{t} \sum_{j=1}^{t} [k_\sigma^{(i)}, k_\sigma^{(j)}] \cdot v_0^{(i)} v_1^{(j)}
\]

\(\implies s_0, s_1 \) can be securely computed using \(O(t^2 \cdot \log n) \) communication
Removing Errors via Preprocessing

Preprocessing phase

Functionality
Samples t-sparse vectors (r_0, r_1) and set $(s_0, s_1) \leftarrow \text{Share}(\langle r_0, r_1 \rangle)$

Implementing the preprocessing
Write $r_{\sigma} = \sum_{i=1}^{t} r_{\sigma}^{(i)}$ where the $r_{\sigma}^{(i)}$ are unit vectors

$$r_{\sigma} = \begin{bmatrix} v_1 \cdots v_t \end{bmatrix}$$

Then: $\langle r_0, r_1 \rangle = \sum_{i=1}^{t} \sum_{j=1}^{t} \langle r_0^{(i)}, r_1^{(j)} \rangle = \sum_{i=1}^{t} \sum_{j=1}^{t} \lfloor k^{(i)}_{\sigma} = k^{(j)}_{\sigma} \rfloor \cdot v_0^{(i)} v_1^{(j)}$

$\Rightarrow s_0, s_1$ can be securely computed using $O(t^2 \cdot \log n)$ communication

Improved version: using LPN with regular noise brings the cost down to $O(t \cdot \log n)$
In the malicious setting, Alice and Bob must prove that pk_0, pk_1 are well-formed.
In the malicious setting, Alice and Bob must prove that pk_0, pk_1 are well-formed.
In the malicious setting, Alice and Bob must prove that pk_0, pk_1 are well-formed.

ZK: knows a sparse r_0 such that $H_0^T \cdot r_0 = pk_0^0$

ZK: knows sparse r_1 such that $\exists s, H \cdot s + r_1 = pk_1$
In the malicious setting, Alice and Bob must prove that pk_0, pk_1 are well-formed.

We introduce a new efficient ZKPoK for LPN relations, with communication $O(t \cdot \log n)$.

ZK: knows a sparse r_0 such that $H_0^T \cdot r_0 = pk_0^0$

ZK: knows sparse r_1 such that $\exists s, H \cdot s + r_1 = pk_1$
Malicious Security

In the malicious setting, Alice and Bob must prove that pk₀, pk₁ are well-formed

\[H^T_0 \cdot r_0 = pk_0^0 \]

\[H^T_1 \cdot r_0 = \]

\[H \cdot s_0 + y = pk_1 \]

We introduce a new efficient ZKPoK for LPN relations, with communication \(O(t \cdot \log n) \)

Idea

Recent works on *pseudorandom correlation generator* show how to distribute shares of \(\Delta \cdot r \) where \(r \in \mathbb{F}_p^n \) is \(t \)-sparse, and \(\Delta \in \mathbb{F}_{p^k} \), via *function secret sharing* (which exist under OWF)

\(\implies \) we use these techniques to authenticate the noise vectors with a MAC \(\Delta \)

\(\implies \) we use the MAC to check the correct computation of the pk’s, *al la* SPDZ.
Thank you for your attention!

Questions?