Non-Interactive Secure Computation of Inner-Product from LPN and LWE

Geoffroy Couteau, Maryam Zarezadeh

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work

$K_{14} \leftarrow \operatorname{Key}\left(\mathrm{sk}_{1}, \mathrm{pk}_{4}\right)$

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work

Non-Interactive Key Exchange

> A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

This Work

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- n parties broadcast an encoding of their input
- Pairs $\left(P_{i}, P_{j}\right)$ can compute $f_{i}\left(x_{i}, x_{j}\right)$ and $f_{j}\left(x_{i}, x_{j}\right)$ from their state and the other party's encoding
- Avoids the $\Omega\left(n^{2}\right)$ overhead

This Work

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- n parties broadcast an encoding of their input
- Pairs $\left(P_{i}, P_{j}\right)$ can compute $f_{i}\left(x_{i}, x_{j}\right)$ and $f_{j}\left(x_{i}, x_{j}\right)$ from their state and the other party's encoding
- Avoids the $\Omega\left(n^{2}\right)$ overhead

This Work

Non-Interactive Key Exchange

A very appealing interaction pattern:

- n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key
- Avoids the $\Omega\left(n^{2}\right)$ overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

- n parties broadcast an encoding of their input
- Pairs $\left(P_{i}, P_{j}\right)$ can compute $f_{i}\left(x_{i}, x_{j}\right)$ and $f_{j}\left(x_{i}, x_{j}\right)$ from their state and the other party's encoding
- Avoids the $\Omega\left(n^{2}\right)$ overhead

This Work

- Non-interactive MPC for shares of inner products: $f_{i}\left(x_{i}, x_{j}\right), f_{j}\left(x_{i}, x_{j}\right)$ form shares of $\left\langle x_{i}, x_{j}\right\rangle$ over \mathbb{F}
- Reconstructing the result = sending a single element of \mathbb{F}
$f_{1}\left(x_{1}, x_{4}\right)=\operatorname{Out}\left(\operatorname{st}_{1}, \operatorname{Enc}\left(x_{4}\right)\right)$

[^0]Non-Interactive Inner Product: Applications
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
. ...

y_{1}	y_{2}	y_{3}
		\%
(\downarrow)	(\downarrow	(\downarrow
$\operatorname{Enc}\left(y_{1}\right)$	$\operatorname{Enc}\left(y_{2}\right)$	$\operatorname{Enc}\left(y_{3}\right)$

Non-Interactive Inner Product: Applications
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
. ...

y_{1}	y_{2}	y_{3}
		\%
(\downarrow)	(\downarrow	(\downarrow
$\operatorname{Enc}\left(y_{1}\right)$	$\operatorname{Enc}\left(y_{2}\right)$	$\operatorname{Enc}\left(y_{3}\right)$

Non-Interactive Inner Product: Applications
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
. ...

Toy Example: Biometrics

- n clients and m servers with a fingerprint stored.
- Ahead of time, each party publishes an encoding of its fingerprint.

y_{1}	y_{2}	y_{3}
		\%
(\downarrow)	(\downarrow	(\downarrow
$\operatorname{Enc}\left(y_{1}\right)$	$\operatorname{Enc}\left(y_{2}\right)$	$\operatorname{Enc}\left(y_{3}\right)$

Non-Interactive Inner Product: Applications
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)
- ML (k-nearest neighbours,SVM, rule mining...)
- Linear algebra
- Similarity measure
- Simple statistics
. ...

Toy Example: Biometrics

- n clients and m servers with a fingerprint stored.
- Ahead of time, each party publishes an encoding of its fingerprint.
- Later, a client C_{i} can authenticate to a server S_{j} by locally computing and sending his share of the Hamming distance, a single element of \mathbb{F}.

Computes $\alpha_{s}=\operatorname{share}_{s}\left(\mathrm{HD}\left(x_{2}, y_{2}\right)\right)$

Preliminaries: LPN and LWE

LPN and LWE - Primal Form

Preliminaries: LPN and LWE

LPN and LWE - Primal Form

$\operatorname{LPN}\left(\mathbb{F}_{2}\right): G \leftarrow_{\$} \mathbb{F}_{2}^{m \times n}, \quad \leftarrow_{\$} \mathbb{F}_{2}^{n}, \quad \leftarrow_{\$} \operatorname{Ber}\left(\mathbb{F}_{2}\right)^{n}$
$\operatorname{LPN}\left(\mathbb{F}_{p}\right): G \leftarrow_{\$} \mathbb{F}_{p}^{m \times n}, \square \leftarrow_{\$} \mathbb{F}_{p}^{n}, \quad \leftarrow_{\$} \operatorname{Ber}\left(\mathbb{F}_{p}\right)^{n}$

Preliminaries: LPN and LWE

LPN and LWE - Primal Form

$\operatorname{LPN}\left(\mathbb{F}_{2}\right): G \leftarrow_{\$} \mathbb{F}_{2}^{m \times n}, \quad \leftarrow_{\$} \mathbb{F}_{2}^{n}, \quad \leftarrow_{\$} \operatorname{Ber}\left(\mathbb{F}_{2}\right)^{n}$
$\operatorname{LPN}\left(\mathbb{F}_{p}\right): G \leftarrow_{\$} \mathbb{F}_{p}^{m \times n}, \square \leftarrow_{\$} \mathbb{F}_{p}^{n}, \quad \leftarrow_{\$} \operatorname{Ber}\left(\mathbb{F}_{p}\right)^{n}$
$\operatorname{LWE}\left(\mathbb{F}_{p}\right): G \leftarrow_{\$} \mathbb{F}_{p}^{m \times n}, \square \leftarrow_{\$} \mathbb{F}_{p}^{n}, \quad \leftarrow_{\$}[-B, B]^{n} \longleftarrow$ 'Small'

Preliminaries: LPN and LWE

LPN and LWE - Dual Form

matrix of G
$\operatorname{LPN}\left(\mathbb{F}_{2}\right): G \leftarrow_{\$} \mathbb{F}_{2}^{m \times n}, \quad \leftarrow_{\$} \mathbb{F}_{2}^{n}, \quad \leftarrow_{\$} \operatorname{Ber}\left(\mathbb{F}_{2}\right)^{n}$
$\operatorname{LPN}\left(\mathbb{F}_{p}\right): G \leftarrow_{\$} \mathbb{F}_{p}^{m \times n}, \quad \leftarrow_{\$} \mathbb{F}_{p}^{n}, \quad \leftarrow_{\$} \operatorname{Ber}\left(\mathbb{F}_{p}\right)^{n}$
$\operatorname{LWE}\left(\mathbb{F}_{p}\right): G \leftarrow_{\$} \mathbb{F}_{p}^{m \times n}, \square \leftarrow_{\$} \mathbb{F}_{p}^{n}, \leftarrow_{\$}[-B, B]^{n} \longleftarrow$ 'Small'

Preliminaries: LPN and LWE

LPN and LWE - Dual Form

Alekhnovich Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Bob computes:
Alice computes:

Embedding an Inner Product in Alekhnovich's Key Exchange

Bob computes:

Alice computes:

Embedding an Inner Product in Alekhnovich's Key Exchange

Bob computes:

Alice computes:

Embedding an Inner Product in Alekhnovich's Key Exchange

We are making progress - but s has to be random for primal LPN to hold!

Embedding an Inner Product in Alekhnovich's Key Exchange

How to embed Alice's input in s ?

Embedding an Inner Product in Alekhnovich's Key Exchange

Idea: split H as $H_{0} \mid H_{1}$

$$
H \cdot{ }_{H_{0}} H_{H_{1}} \cdot{ }^{s_{0}}=H_{s_{1}} \cdot{ }^{s_{0}}+{ }_{H_{1}} \cdot{ }^{s_{1}}
$$

Embedding an Inner Product in Alekhnovich's Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Embedding an Inner Product in Alekhnovich's Key Exchange

Multiparty Inner Product with Leakage

The protocol has t^{2} / n correctness error.
! In MPC, correctness errors translate to leakage when a 'detectable' error occurs: the server learns an equation $\langle v, r\rangle$ with v known and r the noise vector.
\Longrightarrow leaks $\approx N \cdot t^{2} / n$ linear equations in r if the client interacts with N servers.
\Longrightarrow still secure under the LPN with leakage assumption (equivalent to standard LPN, but with a loss)

Multiparty Inner Product with Leakage

The protocol has t^{2} / n correctness error.

A
In MPC, correctness errors translate to leakage when a 'detectable' error occurs: the server learns an equation $\langle v, r\rangle$ with v known and r the noise vector.
\Longrightarrow leaks $\approx N \cdot t^{2} / n$ linear equations in r if the client interacts with N servers.
\Longrightarrow still secure under the LPN with leakage assumption (equivalent to standard LPN, but with a loss)

Alternatives

The above is fine when N is not too large. For large N, or when overwhelming correctness matters (e.g. for biometric authentication), two alternatives:

1. We give an LWE-based variant with negligible error
2. We describe a way to remove errors via a sublinearcommunication preprocessing phase

y_{1}	y_{2}	y_{3}
)		\%
¢	\checkmark	(\downarrow

Enc $\left(y_{1}\right)$
Enc $\left(y_{2}\right)$
$\operatorname{Enc}\left(y_{3}\right)$

A Variant under LWE

Rounding Lemma: if $q /(p \cdot|e|) \geq \lambda^{\omega(1)}$, then $\left\lceil(p / q) \cdot K^{\prime}\right\rfloor \bmod p$ and $\left\lceil(p / q) \cdot K^{\prime}\right\rfloor \bmod p$ form additive shares of $\langle x, y\rangle$ with proba $1-\operatorname{negl}(\lambda)$.

A Variant under LWE

A Variant under LWE

Removing Errors via Preprocessing

Preprocessing phase

Removing Errors via Preprocessing

Preprocessing phase

Removing Errors via Preprocessing

Preprocessing phase

Implementing the preprocessing

Removing Errors via Preprocessing

Preprocessing phase

Functionality

Samples t-sparse vectors $\left(r_{0}, r_{1}\right)$ and set $\left(s_{0}, s_{1}\right) \leftarrow \operatorname{Share}\left(\left\langle r_{0}, r_{1}\right\rangle\right)$

Implementing the preprocessing

Then: $\left\langle r_{0}, r_{1}\right\rangle=\sum_{i=1}^{t} \sum_{j=1}^{t}\left\langle r_{0}^{(i)}, r_{1}^{(j)}\right\rangle=\sum_{i=1}^{t} \sum_{j=1}^{t}[\underbrace{k_{\sigma}^{(i)}={ }_{?} k_{\sigma}^{(j)}}_{\text {Secure Equality Test }}] \cdot \underbrace{v_{0}^{(i)} v_{1}^{(j)}}_{\text {OLE }}$
$\Longrightarrow s_{0}, s_{1}$ can be securely computed using $O\left(t^{2} \cdot \log n\right)$ communication

Removing Errors via Preprocessing

Preprocessing phase

Functionality

Samples t-sparse vectors $\left(r_{0}, r_{1}\right)$ and set $\left(s_{0}, s_{1}\right) \leftarrow \operatorname{Share}\left(\left\langle r_{0}, r_{1}\right\rangle\right)$

Implementing the preprocessing

$$
\text { Write } r_{\sigma}=\sum_{i=1}^{t} r_{\sigma}^{(i)} \text { where the } r_{\sigma}^{(i)} \text { are unit vectors } \underset{\substack{k_{\sigma}^{(i)}}}{0 \cdots 0} 0
$$

$$
\text { Then: }\left\langle r_{0}, r_{1}\right\rangle=\sum_{i=1}^{t} \sum_{j=1}^{t}\left\langle r_{0}^{(i)}, r_{1}^{(j)}\right\rangle=\sum_{i=1}^{t} \sum_{j=1}^{t}[\underbrace{k_{\sigma}^{(i)}={ }^{2} k_{\sigma}^{(j)}}_{\text {Secure Equality Test }}] \cdot \underbrace{v_{0}^{(i)} v_{1}^{(j)}}_{\text {OLE }}
$$

$\Longrightarrow s_{0}, s_{1}$ can be securely computed using $O\left(t^{2} \cdot \log n\right)$ communication
Improved version: using LPN with regular noise brings the cost down to $O(t \cdot \log n)$

Malicious Security

In the malicious setting, Alice and Bob must prove that $\mathrm{pk}_{0}, \mathrm{pk}_{1}$ are well-formed

Malicious Security

In the malicious setting, Alice and Bob must prove that $\mathrm{pk}_{0}, \mathrm{pk}_{1}$ are well-formed

Malicious Security

In the malicious setting, Alice and Bob must prove that $\mathrm{pk}_{0}, \mathrm{pk}_{1}$ are well-formed

Malicious Security

In the malicious setting, Alice and Bob must prove that $\mathrm{pk}_{0}, \mathrm{pk}_{1}$ are well-formed

ZK: knows sparse r_{1} such that $\exists s, H \cdot s+r_{1}=\mathrm{pk}_{1}$
We introduce a new efficient ZKPoK for LPN relations, with communication $O(t \cdot \log n)$

Malicious Security

In the malicious setting, Alice and Bob must prove that $\mathrm{pk}_{0}, \mathrm{pk}_{1}$ are well-formed

ZK: knows a sparse r_{0} such that $H_{0}^{\top} \cdot r_{0}=\mathrm{pk}_{0}^{0}$

ZK: knows sparse r_{1} such that $\exists s, H \cdot s+r_{1}=\mathrm{pk}_{1}$

We introduce a new efficient ZKPoK for LPN relations, with communication $O(t \cdot \log n)$

Idea

Recent works on pseudorandom correlation generator show how to distribute shares of $\Delta \cdot r$ where $r \in \mathbb{F}_{p}^{n}$ is t-sparse, and $\Delta \in \mathbb{F}_{p^{k}}$, via function secret sharing (which exist under OWF) \Longrightarrow we use these techniques to authenticate the noise vectors with a MAC Δ \Longrightarrow we use the MAC to check the correct computation of the $\mathrm{pk}^{\prime} s$, al la SPDZ.

Thank you for your attention!

Questions?

[^0]: $f_{1}\left(x_{1}, x_{4}\right)=\operatorname{Out}\left(\operatorname{st}_{4}, \operatorname{Enc}\left(x_{1}\right)\right)$

