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Efficiency
Communication:  from Bob and  from Alice with reasonable 
parameters ( ),  from each party 
asymptotically (which is optimal)

Computation: cost dominated by  ( ), can 
be  (LPN with quasi-cyclic codes, standard) or even 

 (Druk-Ishai codes, slightly more exotic)

2m 4m
m = |x | = |y | (1 + ε)m

v → H ⋅ v ⟺ v → H⊤ ⋅ v
O(m ⋅ log m)

O(m)

4mm 2m m

t ≈ 100
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The protocol has  correctness error.

       In MPC, correctness errors translate to leakage 
when a ‘detectable’ error occurs: the server learns an 
equation  with  known and  the noise vector.

 leaks  linear equations in  if the client 
interacts with  servers.

 still secure under the LPN with leakage 
assumption (equivalent to standard LPN, but with a loss)

t2/n

⟨v, r⟩ v r
⟹ ≈ N ⋅ t2/n r

N
⟹
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The above is fine when  is not too large. For large , 
or when overwhelming correctness matters (e.g. for 
biometric authentication), two alternatives:

1. We give an LWE-based variant with negligible error
2. We describe a way to remove errors via a sublinear-

communication preprocessing phase

N N

Alternatives
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+−
Negligible correctness error & leakage

Larger communication overhead
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Secure Equality Test OLE

  can be securely computed using  communication⟹ s0, s1 O(t2 ⋅ log n)

Improved version: using LPN with regular noise brings the cost down to O(t ⋅ log n)

0 ⋯ 0 v1 0 ⋯ 0 0 ⋯ 0 v2 0 ⋯ 0 0 ⋯ 0 v3 0 ⋯ 0 0 ⋯ 0 v4 0 ⋯ 0rσ =



Malicious Security

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that  are well-formed𝗉𝗄0, 𝗉𝗄1



Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that  are well-formed𝗉𝗄0, 𝗉𝗄1

H⊤
1 pk1

0



Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that  are well-formed𝗉𝗄0, 𝗉𝗄1

H⊤
1 pk1

0

ZK: knows a sparse  such that r0 H⊤
0 ⋅ r0 = 𝗉𝗄0

0 ZK: knows sparse  such that r1 ∃s, H ⋅ s + r1 = 𝗉𝗄1



Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that  are well-formed𝗉𝗄0, 𝗉𝗄1

We introduce a new efficient ZKPoK for LPN relations, with communication O(t ⋅ log n)

H⊤
1 pk1

0

ZK: knows a sparse  such that r0 H⊤
0 ⋅ r0 = 𝗉𝗄0

0 ZK: knows sparse  such that r1 ∃s, H ⋅ s + r1 = 𝗉𝗄1



Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that  are well-formed𝗉𝗄0, 𝗉𝗄1

We introduce a new efficient ZKPoK for LPN relations, with communication O(t ⋅ log n)

H⊤
1 pk1

0

ZK: knows a sparse  such that r0 H⊤
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Recent works on pseudorandom correlation generator show how to distribute shares of  
where  is -sparse, and , via function secret sharing (which exist under OWF)

 we use these techniques to authenticate the noise vectors with a MAC 

 we use the MAC to check the correct computation of the , al la SPDZ.

Δ ⋅ r
r ∈ 𝔽n

p t Δ ∈ 𝔽pk

⟹ Δ
⟹ 𝗉𝗄′￼s

Idea



Thank you for your attention!

Questions?


