
Non-Interactive Secure Computation of
Inner-Product from LPN and LWE

Geoffroy Couteau, Maryam Zarezadeh

Non-Interactive Key Exchange

𝗉𝗄1

This Work

𝗉𝗄2

𝗉𝗄3

𝗉𝗄4

𝗉𝗄5

𝗌𝗄2

𝗌𝗄3𝗌𝗄4

𝗌𝗄5

𝗌𝗄1
A very appealing interaction pattern:

• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Secure Computation

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

K14 ← 𝖪𝖾𝗒(𝗌𝗄4, 𝗉𝗄1)

𝗌𝗄2

𝗌𝗄3𝗌𝗄4

𝗌𝗄5

𝗌𝗄1

K14 ← 𝖪𝖾𝗒(𝗌𝗄1, 𝗉𝗄4)

K14

Non-Interactive Secure Computation

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

𝗌𝗄2

𝗌𝗄3𝗌𝗄4

𝗌𝗄5

𝗌𝗄1

K25 ← 𝖪𝖾𝗒(𝗌𝗄2, 𝗉𝗄5)

K25

K25 ← 𝖪𝖾𝗒(𝗌𝗄5, 𝗉𝗄2)

Non-Interactive Secure Computation

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

K13 ← 𝖪𝖾𝗒(𝗌𝗄3, 𝗉𝗄1)

𝗌𝗄2

𝗌𝗄3𝗌𝗄4

𝗌𝗄5

𝗌𝗄1

K13 ← 𝖪𝖾𝗒(𝗌𝗄1, 𝗉𝗄3)

K13

Non-Interactive Secure Computation

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

𝗌𝗄2

𝗌𝗄3𝗌𝗄4

𝗌𝗄5

𝗌𝗄1

⋯
Non-Interactive Secure Computation

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

Non-Interactive Secure Computation 𝖤𝗇𝖼(x1)

𝗌𝗍2

𝗌𝗍3𝗌𝗍4

𝗌𝗍5

𝗌𝗍1

𝖤𝗇𝖼(x2)
𝖤𝗇𝖼(x

3)

𝖤𝗇
𝖼(x

4)

𝖤𝗇𝖼(x5)Can we get a similar pattern for some simple MPC?

• parties broadcast an encoding of their input

• Pairs can compute and from
their state and the other party’s encoding

• Avoids the overhead

n
(Pi, Pj) fi(xi, xj) fj(xi, xj)

Ω(n2)

x1

x2

x3

x4x5

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

Non-Interactive Secure Computation

𝗌𝗍2

𝗌𝗍3𝗌𝗍4

𝗌𝗍5

𝗌𝗍1

Can we get a similar pattern for some simple MPC?

• parties broadcast an encoding of their input

• Pairs can compute and from
their state and the other party’s encoding

• Avoids the overhead

n
(Pi, Pj) fi(xi, xj) fj(xi, xj)

Ω(n2)

f1(x1, x4) = 𝖮𝗎𝗍(𝗌𝗍1, 𝖤𝗇𝖼(x4))

f1(x1, x4) = 𝖮𝗎𝗍(𝗌𝗍4, 𝖤𝗇𝖼(x1))

x1

x2

x3

x4x5

A very appealing interaction pattern:
• parties simultaneously broadcast a single message

• All pairs of parties get a shared private key

• Avoids the overhead of naive pairwise exchange

n

Ω(n2)

Non-Interactive Key Exchange

This Work

Non-Interactive Secure Computation

𝗌𝗍2

𝗌𝗍3𝗌𝗍4

𝗌𝗍5

𝗌𝗍1

Can we get a similar pattern for some simple MPC?

• parties broadcast an encoding of their input

• Pairs can compute and from
their state and the other party’s encoding

• Avoids the overhead

n
(Pi, Pj) fi(xi, xj) fj(xi, xj)

Ω(n2)

f1(x1, x4) = 𝖮𝗎𝗍(𝗌𝗍1, 𝖤𝗇𝖼(x4))

f1(x1, x4) = 𝖮𝗎𝗍(𝗌𝗍4, 𝖤𝗇𝖼(x1))

x1

x2

x3

x4x5

• Non-interactive MPC for shares of inner products: 
 form shares of over

• Reconstructing the result = sending a single element of

fi(xi, xj), fj(xi, xj) ⟨xi, xj⟩ 𝔽

𝔽

x3x1 x2 x4

y1 y2 y3

𝖤𝗇𝖼(x1) 𝖤𝗇𝖼(x2) 𝖤𝗇𝖼(x3) 𝖤𝗇𝖼(x4)

𝖤𝗇𝖼(y1) 𝖤𝗇𝖼(y2) 𝖤𝗇𝖼(y3)

Non-Interactive Inner Product:
Applications

Inner products is a simple, but very useful function:
• Biometric authentication (via Hamming distance)
• Pattern matching (via Hamming distance)
• ML (k-nearest neighbours,SVM, rule mining…)
• Linear algebra
• Similarity measure
• Simple statistics

• ⋯

x3x1 x2 x4

y1 y2 y3

𝖤𝗇𝖼(x1) 𝖤𝗇𝖼(x2) 𝖤𝗇𝖼(x3) 𝖤𝗇𝖼(x4)

𝖤𝗇𝖼(y1) 𝖤𝗇𝖼(y2) 𝖤𝗇𝖼(y3)

Inner products is a simple, but very useful function:
• Biometric authentication (via Hamming distance)
• Pattern matching (via Hamming distance)
• ML (k-nearest neighbours,SVM, rule mining…)
• Linear algebra
• Similarity measure
• Simple statistics

• ⋯

Non-Interactive Inner Product:
Applications

x3x1 x2 x4

y1 y2 y3Inner products is a simple, but very useful function:
• Biometric authentication (via Hamming distance)
• Pattern matching (via Hamming distance)
• ML (k-nearest neighbours,SVM, rule mining…)
• Linear algebra
• Similarity measure
• Simple statistics

• ⋯

Toy Example: Biometrics
𝖤𝗇𝖼(x1) 𝖤𝗇𝖼(x2) 𝖤𝗇𝖼(x3) 𝖤𝗇𝖼(x4)

𝖤𝗇𝖼(y1) 𝖤𝗇𝖼(y2) 𝖤𝗇𝖼(y3)

• clients and servers with a fingerprint stored.

• Ahead of time, each party publishes an
encoding of its fingerprint.

• Later, a client can authenticate to a server
by locally computing and sending his share of
the Hamming distance: a single element of .

n m

Ci Sj

𝔽

Non-Interactive Inner Product:
Applications

x3x1 x2 x4

y1 y2 y3Inner products is a simple, but very useful function:
• Biometric authentication (via Hamming distance)
• Pattern matching (via Hamming distance)
• ML (k-nearest neighbours,SVM, rule mining…)
• Linear algebra
• Similarity measure
• Simple statistics

• ⋯

Toy Example: Biometrics

• clients and servers with a fingerprint stored.

• Ahead of time, each party publishes an
encoding of its fingerprint.

• Later, a client can authenticate to a server
by locally computing and sending his share of
the Hamming distance, a single element of .

n m

Ci Sj

𝔽 Computes αc = 𝗌𝗁𝖺𝗋𝖾c(𝖧𝖣(x2, y2))

Computes αs = 𝗌𝗁𝖺𝗋𝖾s(𝖧𝖣(x2, y2))

αc

Check:

αc + αs ≤? T

Y/N

Non-Interactive Inner Product:
Applications

Preliminaries: LPN and LWE

LPN and LWE — Primal Form

⋅ +,

Random matrix NoiseShort secret

≈ $G G

Preliminaries: LPN and LWE

LPN and LWE — Primal Form

⋅ +,

Random matrix NoiseShort secret

≈ $G G

LPN(): 𝔽2 G ←$ 𝔽m×n
2 , ←$ 𝔽n

2, ←$ 𝖡𝖾𝗋(𝔽2)n

LPN(): 𝔽p G ←$ 𝔽m×n
p , ←$ 𝔽n

p, ←$ 𝖡𝖾𝗋(𝔽p)n
‘Sparse’

Preliminaries: LPN and LWE

LPN and LWE — Primal Form

⋅ +,

Random matrix NoiseShort secret

≈ $G G

LPN(): 𝔽2 G ←$ 𝔽m×n
2 , ←$ 𝔽n

2, ←$ 𝖡𝖾𝗋(𝔽2)n

LPN(): 𝔽p G ←$ 𝔽m×n
p , ←$ 𝔽n

p, ←$ 𝖡𝖾𝗋(𝔽p)n
‘Sparse’

LWE(): 𝔽p G ←$ 𝔽m×n
p , ←$ 𝔽n

p, ←$ [−B, B]n ‘Small’

LPN and LWE — Dual Form

⋅ +,

Random matrix NoiseShort secret

≈ $G GH

Parity-check
matrix of G

⋅

Preliminaries: LPN and LWE

LPN(): 𝔽2 G ←$ 𝔽m×n
2 , ←$ 𝔽n

2, ←$ 𝖡𝖾𝗋(𝔽2)n

LPN(): 𝔽p G ←$ 𝔽m×n
p , ←$ 𝔽n

p, ←$ 𝖡𝖾𝗋(𝔽p)n
‘Sparse’

LWE(): 𝔽p G ←$ 𝔽m×n
p , ←$ 𝔽n

p, ←$ [−B, B]n ‘Small’

LPN and LWE — Dual Form

Noise

≈ $

LPN(): 𝔽2 H ←$ 𝔽m×n
2 , ←$ 𝖡𝖾𝗋(𝔽2)n

H ⋅H

Random matrix

,

LPN(): 𝔽p H ←$ 𝔽m×n
p , ←$ 𝖡𝖾𝗋(𝔽p)n

LWE(): 𝔽p H ←$ 𝔽m×n
p , ←$ [−B, B]n

Preliminaries: LPN and LWE

‘Sparse’

‘Small’

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

Correctness

K′￼ = r⊤
0 ⋅ (H ⋅ s + r1) = (H⊤ ⋅ r0)⊤ ⋅ s + r⊤

0 ⋅ r1

= 𝗉𝗄⊤

0 ⋅ s + r⊤
0 ⋅ r1 = K + e

Where Pr[e = 1] ≈ t2/n ≪ 1

Claim: Pr[K = K′￼] ≈ t2/n ≪ 1

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

r⊤
0

s

H
⋅

r1

+⋅= ⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

Correctness

K′￼ = r⊤
0 ⋅ (H ⋅ s + r1) = (H⊤ ⋅ r0)⊤ ⋅ s + r⊤

0 ⋅ r1

= 𝗉𝗄⊤

0 ⋅ s + r⊤
0 ⋅ r1 = K + e

Where Pr[e = 1] ≈ t2/n ≪ 1

Claim: Pr[K = K′￼] ≈ t2/n ≪ 1

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

r⊤
0

s

H
⋅

r1

+⋅=

r1

+⋅= r⊤
0 ⋅

pk0

s⊤

⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

Correctness

K′￼ = r⊤
0 ⋅ (H ⋅ s + r1) = (H⊤ ⋅ r0)⊤ ⋅ s + r⊤

0 ⋅ r1

= 𝗉𝗄⊤

0 ⋅ s + r⊤
0 ⋅ r1 = K + e

Where Pr[e = 1] ≈ t2/n ≪ 1

Claim: Pr[K = K′￼] ≈ t2/n ≪ 1

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

r⊤
0

s

H
⋅

r1

+⋅=

r1

+⋅= r⊤
0 ⋅

pk0

s⊤

⋅
pk0

s⊤

K

K e+=

r⊤
0

pk1

⋅

K′￼

Correctness

K′￼ = r⊤
0 ⋅ (H ⋅ s + r1) = (H⊤ ⋅ r0)⊤ ⋅ s + r⊤

0 ⋅ r1

= 𝗉𝗄⊤

0 ⋅ s + r⊤
0 ⋅ r1 = K + e

Where Pr[e = 1] ≈ t2/n ≪ 1

Claim: Pr[K = K′￼] ≈ t2/n ≪ 1

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

r⊤
0

s

H
⋅

r1

+⋅=

r1

+⋅= r⊤
0 ⋅

pk0

s⊤

⋅
pk0

s⊤

K

K e+=

r⊤
0

pk1

⋅

K′￼

Correctness

K′￼ = r⊤
0 ⋅ (H ⋅ s + r1) = (H⊤ ⋅ r0)⊤ ⋅ s + r⊤

0 ⋅ r1

= 𝗉𝗄⊤

0 ⋅ s + r⊤
0 ⋅ r1 = K + e

Where Pr[e = 1] ≈ t2/n ≪ 1

Claim: Pr[K = K′￼] ≈ t2/n ≪ 1

n

Hamming weight t

Alekhnovich Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

Dual LPN Primal LPN

Follows from dual LPN + primal LPN

Security

(The proof is standard)

Embedding an Inner Product in Alekhnovich’s Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

⋅
pk0

s⊤

K

r⊤
0

pk1

⋅

K′￼

Since the parties are computing an inner product to get , could we
embed an inner product computation?

K

Embedding an Inner Product in Alekhnovich’s Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

Warmup attempt: only Bob has an input
Input:

x −

x

Bob computes: Alice computes:

Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get , could we
embed an inner product computation?

K

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

Warmup attempt: only Bob has an input
Input:

x −

⋅
pk0

s⊤

K

x

Bob computes: Alice computes:

Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get , could we
embed an inner product computation?

K

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

Warmup attempt: only Bob has an input
Input:

x −

⋅
pk0

s⊤

K

x

r⊤
0

pk1

⋅

K′￼

−K

+⋅= ⋅
pk0

s⊤ + e− s⊤

x

Bob computes: Alice computes:

Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get , could we
embed an inner product computation?

K

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=

Warmup attempt: only Bob has an input
Input:

x −

⋅
pk0

s⊤

K

x

r⊤
0

pk1

⋅

K′￼

−K

+⋅= ⋅
pk0

s⊤ + e− s⊤

x

Bob computes: Alice computes:

 and form (noisy) additive share of K K′￼ ⟨x, s⟩

We are making progress — but has to be random for primal LPN to hold!s

Embedding an Inner Product in Alekhnovich’s Key Exchange

Since the parties are computing an inner product to get , could we
embed an inner product computation?

K

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=
x −

How to embed Alice’s input in ?s

Embedding an Inner Product in Alekhnovich’s Key Exchange

H⊤ ⋅
r0

pk0
= s

H
⋅

r1

+
pk1

=
x −

Idea: split as H H0 |H1

s

H
⋅ s0

H0

⋅
H1

s1

= s0

H0

⋅
H1

s1= ⋅+

Embedding an Inner Product in Alekhnovich’s Key Exchange

Input: x

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

Idea: split as H H0 |H1

x
−

s

H
⋅ s0

H0

⋅
H1

s1

= s0

H0

⋅
H1

s1= ⋅+ Input: y s1=

0
y

s0

Embedding an Inner Product in Alekhnovich’s Key Exchange

Input: x

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

Idea: split as H H0 |H1

x
−

s

H
⋅ s0

H0

⋅
H1

s1

= s0

H0

⋅
H1

s1= ⋅+ Input: y s1=

0
y

s0

Embedding an Inner Product in Alekhnovich’s Key Exchange

⋅
pk0

K

s⊤
0 y⊤

Input: x

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

Idea: split as H H0 |H1

x
−

s

H
⋅ s0

H0

⋅
H1

s1

= s0

H0

⋅
H1

s1= ⋅+ Input: y s1=

0
y

s0

r⊤
0

pk1

⋅

K′￼

Embedding an Inner Product in Alekhnovich’s Key Exchange

⋅
pk0

K

s⊤
0 y⊤

Input: x

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

Idea: split as H H0 |H1

x
−

s

H
⋅ s0

H0

⋅
H1

s1

= s0

H0

⋅
H1

s1= ⋅+ Input: y s1=

0
y

s0

r⊤
0

pk1

⋅

K′￼

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

s⊤
0 y⊤

Embedding an Inner Product in Alekhnovich’s Key Exchange

⋅
pk0

K

s⊤
0 y⊤

Input: x

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

Idea: split as H H0 |H1

x
−

s

H
⋅ s0

H0

⋅
H1

s1

= s0

H0

⋅
H1

s1= ⋅+ Input: y s1=

0
y

s0

r⊤
0

pk1

⋅

K′￼

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

s⊤
0 y⊤

Security
Use primal LPN with matrix
for Alice, and dual LPN with
matrix for Bob

H0

H⊤

Embedding an Inner Product in Alekhnovich’s Key Exchange

⋅
pk0

K

s⊤
0 y⊤

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

x
−0

y

s0

r⊤
0

pk1

⋅

K′￼

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

s⊤
0 y⊤

Security
Use primal LPN with matrix
for Alice, and dual LPN with
matrix for Bob

H0

H⊤

Embedding an Inner Product in Alekhnovich’s Key Exchange

⋅
pk0

K

s⊤
0 y⊤

Efficiency
Communication: from Bob and from Alice with reasonable
parameters (), from each party
asymptotically (which is optimal)

Computation: cost dominated by (), can
be (LPN with quasi-cyclic codes, standard) or even

 (Druk-Ishai codes, slightly more exotic)

2m 4m
m = |x | = |y | (1 + ε)m

v → H ⋅ v ⟺ v → H⊤ ⋅ v
O(m ⋅ log m)

O(m)

4mm 2m m

t ≈ 100

Multiparty Inner Product with Leakage

x3x1 x2 x4

y1 y2 y3

𝖤𝗇𝖼(x1) 𝖤𝗇𝖼(x2) 𝖤𝗇𝖼(x3) 𝖤𝗇𝖼(x4)

𝖤𝗇𝖼(y1) 𝖤𝗇𝖼(y2) 𝖤𝗇𝖼(y3)

α1 α2 α3

The protocol has correctness error.

 In MPC, correctness errors translate to leakage
when a ‘detectable’ error occurs: the server learns an
equation with known and the noise vector.

 leaks linear equations in if the client
interacts with servers.

 still secure under the LPN with leakage
assumption (equivalent to standard LPN, but with a loss)

t2/n

⟨v, r⟩ v r
⟹ ≈ N ⋅ t2/n r

N
⟹

Multiparty Inner Product with Leakage

x3x1 x2 x4

y1 y2 y3

𝖤𝗇𝖼(x1) 𝖤𝗇𝖼(x2) 𝖤𝗇𝖼(x3) 𝖤𝗇𝖼(x4)

𝖤𝗇𝖼(y1) 𝖤𝗇𝖼(y2) 𝖤𝗇𝖼(y3)

α1 α2 α3

The protocol has correctness error.

 In MPC, correctness errors translate to leakage
when a ‘detectable’ error occurs: the server learns an
equation with known and the noise vector.

 leaks linear equations in if the client
interacts with servers.

 still secure under the LPN with leakage
assumption (equivalent to standard LPN, but with a loss)

t2/n

⟨v, r⟩ v r
⟹ ≈ N ⋅ t2/n r

N
⟹

The above is fine when is not too large. For large ,
or when overwhelming correctness matters (e.g. for
biometric authentication), two alternatives:

1. We give an LWE-based variant with negligible error
2. We describe a way to remove errors via a sublinear-

communication preprocessing phase

N N

Alternatives

H
⋅

r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

∈ ℤp ∈ ℤp
∈ ℤk×n

q

(q/p) ⋅
⋅ (q/p)H

⋅
r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

∈ ℤp ∈ ℤp
∈ ℤk×n

q

(q/p) ⋅
⋅ (q/p)H

⋅
r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

K′￼

⋅
pk0

K

r⊤
0

pk1

⋅

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

(q/p) ⋅

(q/p) ⋅

(q/p) ⋅

s⊤
0 y⊤ s⊤

0 y⊤

∈ ℤp ∈ ℤp
∈ ℤk×n

q

(q/p) ⋅
⋅ (q/p)H

⋅
r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

 with in

e = r⊤
0 ⋅ r1 r0, r1 [−B, B]n

⟹ e ≤ n ⋅ B2

K′￼

⋅
pk0

K

r⊤
0

pk1

⋅

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

(q/p) ⋅

(q/p) ⋅

(q/p) ⋅

s⊤
0 y⊤ s⊤

0 y⊤

∈ ℤp ∈ ℤp
∈ ℤk×n

q

(q/p) ⋅
⋅ (q/p)H

⋅
r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

 with in

e = r⊤
0 ⋅ r1 r0, r1 [−B, B]n

⟹ e ≤ n ⋅ B2

K′￼

⋅
pk0

K

r⊤
0

pk1

⋅

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

(q/p) ⋅

(q/p) ⋅

(q/p) ⋅

s⊤
0 y⊤ s⊤

0 y⊤

Rounding Lemma: if , then and
 form additive shares of with proba .

q/(p ⋅ |e |) ≥ λω(1) ⌈(p/q) ⋅ K′￼⌋ mod p
⌈(p/q) ⋅ K′￼⌋ mod p ⟨x, y⟩ 1 − 𝗇𝖾𝗀𝗅(λ)

∈ ℤp ∈ ℤp
∈ ℤk×n

q

(q/p) ⋅
⋅ (q/p)H

⋅
r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

 with in

e = r⊤
0 ⋅ r1 r0, r1 [−B, B]n

⟹ e ≤ n ⋅ B2

K′￼

⋅
pk0

K

r⊤
0

pk1

⋅

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

(q/p) ⋅

(q/p) ⋅

(q/p) ⋅

s⊤
0 y⊤ s⊤

0 y⊤

Rounding Lemma: if , then and
 form additive shares of with proba .

q/(p ⋅ |e |) ≥ λω(1) ⌈(p/q) ⋅ K′￼⌋ mod p
⌈(p/q) ⋅ K′￼⌋ mod p ⟨x, y⟩ 1 − 𝗇𝖾𝗀𝗅(λ)

⌈(p/q) ⋅ K′￼⌋ mod p ⌈(p/q) ⋅ K⌋ mod p

Output Output

∈ ℤp ∈ ℤp
∈ ℤk×n

q

(q/p) ⋅
⋅ (q/p)H

⋅
r1

+
pk1

=
y

s0x y

H⊤ ⋅
r0

pk0
=

x
−0

A Variant under LWE

 with in

e = r⊤
0 ⋅ r1 r0, r1 [−B, B]n

⟹ e ≤ n ⋅ B2

K′￼

⋅
pk0

K

r⊤
0

pk1

⋅

−K

+⋅= ⋅
pk0

+ e− s⊤
0

x

0y⊤

⋅ xy⊤=

(q/p) ⋅

(q/p) ⋅

(q/p) ⋅

s⊤
0 y⊤ s⊤

0 y⊤

Rounding Lemma: if , then and
 form additive shares of with proba .

q/(p ⋅ |e |) ≥ λω(1) ⌈(p/q) ⋅ K′￼⌋ mod p
⌈(p/q) ⋅ K′￼⌋ mod p ⟨x, y⟩ 1 − 𝗇𝖾𝗀𝗅(λ)

⌈(p/q) ⋅ K′￼⌋ mod p ⌈(p/q) ⋅ K⌋ mod p

Output Output

+−
Negligible correctness error & leakage

Larger communication overhead

Removing Errors via Preprocessing

(r0, s0) (r1, s1)Samples -sparse vectors and
set

t (r0, r1)
(s0, s1) ← 𝖲𝗁𝖺𝗋𝖾(⟨r0, r1⟩)

Functionality

Preprocessing phase

Removing Errors via Preprocessing

(r0, s0) (r1, s1)Samples -sparse vectors and
set

t (r0, r1)
(s0, s1) ← 𝖲𝗁𝖺𝗋𝖾(⟨r0, r1⟩)

Functionality

Preprocessing phase

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

x
−0

y

s0

Online phase

Removing Errors via Preprocessing

(r0, s0) (r1, s1)Samples -sparse vectors and
set

t (r0, r1)
(s0, s1) ← 𝖲𝗁𝖺𝗋𝖾(⟨r0, r1⟩)

Functionality

Preprocessing phase

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

x
−0

y

s0

Online phase

Output

⟨r0, 𝗉𝗄1⟩ + s0 ⟨s, 𝗉𝗄0⟩ + s1

Output Output

⟨r0, 𝗉𝗄1⟩ − s0 + ⟨s, 𝗉𝗄0⟩ − s1

= ⟨x, y⟩ − ⟨r0, r1⟩ + (s0 + s1)
= ⟨x, y⟩

Removing Errors via Preprocessing

(r0, s0) (r1, s1)Samples -sparse vectors and
set

t (r0, r1)
(s0, s1) ← 𝖲𝗁𝖺𝗋𝖾(⟨r0, r1⟩)

Functionality

Preprocessing phase

Implementing the preprocessing

Removing Errors via Preprocessing

(r0, s0) (r1, s1)Samples -sparse vectors and
set

t (r0, r1)
(s0, s1) ← 𝖲𝗁𝖺𝗋𝖾(⟨r0, r1⟩)

Functionality

Preprocessing phase

Implementing the preprocessing
 Write where the are unit vectors

Then:

rσ =
t

∑
i=1

r(i)
σ r(i)

σ

⟨r0, r1⟩ =
t

∑
i=1

t

∑
j=1

⟨r(i)
0 , r(j)

1 ⟩ =
t

∑
i=1

t

∑
j=1

[k(i)
σ =? k(j)

σ] ⋅ v(i)
0 v(j)

1

0 ⋯ 0 v(i)
σ 0 ⋯ 0

k(i)
σ

Secure Equality Test OLE

 can be securely computed using communication⟹ s0, s1 O(t2 ⋅ log n)

Removing Errors via Preprocessing

(r0, s0) (r1, s1)Samples -sparse vectors and
set

t (r0, r1)
(s0, s1) ← 𝖲𝗁𝖺𝗋𝖾(⟨r0, r1⟩)

Functionality

Preprocessing phase

Implementing the preprocessing
 Write where the are unit vectors

Then:

rσ =
t

∑
i=1

r(i)
σ r(i)

σ

⟨r0, r1⟩ =
t

∑
i=1

t

∑
j=1

⟨r(i)
0 , r(j)

1 ⟩ =
t

∑
i=1

t

∑
j=1

[k(i)
σ =? k(j)

σ] ⋅ v(i)
0 v(j)

1

0 ⋯ 0 v(i)
σ 0 ⋯ 0

k(i)
σ

Secure Equality Test OLE

 can be securely computed using communication⟹ s0, s1 O(t2 ⋅ log n)

Improved version: using LPN with regular noise brings the cost down to O(t ⋅ log n)

0 ⋯ 0 v1 0 ⋯ 0 0 ⋯ 0 v2 0 ⋯ 0 0 ⋯ 0 v3 0 ⋯ 0 0 ⋯ 0 v4 0 ⋯ 0rσ =

Malicious Security

H⊤ ⋅
r0

pk0
= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that are well-formed𝗉𝗄0, 𝗉𝗄1

Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that are well-formed𝗉𝗄0, 𝗉𝗄1

H⊤
1 pk1

0

Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that are well-formed𝗉𝗄0, 𝗉𝗄1

H⊤
1 pk1

0

ZK: knows a sparse such that r0 H⊤
0 ⋅ r0 = 𝗉𝗄0

0 ZK: knows sparse such that r1 ∃s, H ⋅ s + r1 = 𝗉𝗄1

Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that are well-formed𝗉𝗄0, 𝗉𝗄1

We introduce a new efficient ZKPoK for LPN relations, with communication O(t ⋅ log n)

H⊤
1 pk1

0

ZK: knows a sparse such that r0 H⊤
0 ⋅ r0 = 𝗉𝗄0

0 ZK: knows sparse such that r1 ∃s, H ⋅ s + r1 = 𝗉𝗄1

Malicious Security

H⊤
0 ⋅

r0

pk0
0= H

⋅
r1

+
pk1

=

x
−0

y

s0

 In the malicious setting, Alice and Bob must prove that are well-formed𝗉𝗄0, 𝗉𝗄1

We introduce a new efficient ZKPoK for LPN relations, with communication O(t ⋅ log n)

H⊤
1 pk1

0

ZK: knows a sparse such that r0 H⊤
0 ⋅ r0 = 𝗉𝗄0

0 ZK: knows sparse such that r1 ∃s, H ⋅ s + r1 = 𝗉𝗄1

Recent works on pseudorandom correlation generator show how to distribute shares of
where is -sparse, and , via function secret sharing (which exist under OWF)

 we use these techniques to authenticate the noise vectors with a MAC

 we use the MAC to check the correct computation of the , al la SPDZ.

Δ ⋅ r
r ∈ 𝔽n

p t Δ ∈ 𝔽pk

⟹ Δ
⟹ 𝗉𝗄′￼s

Idea

Thank you for your attention!

Questions?

