tion of
WE

Geoftfroy Couteau, Maryam Zarezadeh

== barkhausen
@ TLE g b

Universite
de Paris

A very appealing interaction pattern:
. n parties simultaneously broadcast a single message

- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

-e Key Exchange Ky, < Key(skj, pk,)

A very appealing interaction pattern:
. n parties simultaneously broadcast a single message

- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

Ky, < Key(sky, pk;)

A very appealing interaction pattern:
. n parties simultaneously broadcast a single message

- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

-e Key Exchange K5 < Key(skj, pk;,)

A very appealing interaction pattern:
. n parties simultaneously broadcast a single message

- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

_ecure Computation .
A
\ 4

Sk5

K,; < Key(sks, pk,)

A very appealing interaction pattern:
. n parties simultaneously broadcast a single message

- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

W o

Non-Interactive Key Exchange
A very appealing interaction pattern:
. n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?
. 1 parties broadcast an encoding of their input

. Pairs (P;, P;) can compute f,(x;, X;) and f,(x;, x;) from

their state and the other party’s encoding
. Avoids the Q(n?) overhead

This Work

Non-Interactive Key Exchange
A very appealing interaction pattern:
. n parties simultaneously broadcast a single message
- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?
. 1 parties broadcast an encoding of their input

. Pairs (P;, P;) can compute f,(x;, X;) and f,(x;, x;) from

their state and the other party’s encoding
. Avoids the Q(n?) overhead

This Work

1 (x1, x4) = Out(sty, Enc(xy))

11 (x1, x4) = Out(sty, Enc(x,))

Non-Interactive Key Exchange J1(x1, x4) = Out(sty, Enc(xy))

A very appealing interaction pattern:
. n parties simultaneously broadcast a single message

- All pairs of parties get a shared private key

. Avoids the Q(n?) overhead of naive pairwise exchange

Non-Interactive Secure Computation

Can we get a similar pattern for some simple MPC?

. 1 parties broadcast an encoding of their input

. Pairs (P;, P;) can compute f,(x;, X;) and f,(x;, x;) from

their state and the other party’s encoding
. Avoids the Q(n?) overhead

This Work

* Non-interactive MPC for shares of inner products:
Ji(x; X)), f(x;, x;) form shares of (x;, x;) over F

. Reconstructing the result = sending a single element of [F f1(x1, x4) = Out(sty, Enc(x)))

Non-Interactive Inner Product:
Applications
Inner products is a simple, but very useful function:

- Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)

» ML (k-nearest neighbours,SVM, rule mining...)

» Linear algebra

« Similarity measure

» Simple statistics

Non-Interactive Inner Product:
Applications
Inner products is a simple, but very useful function:

» Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)

» ML (k-nearest neighbours,SVM, rule mining...)

» Linear algebra

« Similarity measure

» Simple statistics

Non-Interactive Inner Product:
Applications
Inner products is a simple, but very useful function:

» Biometric authentication (via Hamming distance)
- Pattern matching (via Hamming distance)

» ML (k-nearest neighbours,SVM, rule mining...)

» Linear algebra

« Similarity measure

» Simple statistics

Toy Example: Biometrics

« n clients and m servers with a fingerprint stored.

 Ahead of time, each party publishes an
encoding of its fingerprint.

Non-Interactive Inner Product: Computes a, = sharey(HD(x,, y,))
Applications

Inner products is a simple, but very useful function: Y3

- Biometric authentication (via Hamming distance) /——=\
=0

- Pattern matching (via Hamming distance) s

» ML (k-nearest neighbours,SVM, rule mining...)

» Linear algebra

« Similarity measure

» Simple statistics

Toy Example: Biometrics

« n clients and m servers with a fingerprint stored.

 Ahead of time, each party publishes an
encoding of its fingerprint.

. Later, a client C; can authenticate to a server ;

by locally computing and sending his share of
the Hamming distance, a single element of [, Computes a, = share (HD(x,, y,))

LPN and LWE — Primal Form

“
T

Random matrix Short secret Noise

LPN and LWE — Primal Form

“
T

Random matrix Short secret Noise

LPN([): .<—$ I]:Z‘X”, I<—$ 5, «¢ Ber([,)" -

LPN([Fp): .<—$ [FZ‘X”, I<—$., g Ber(l]:p)” -

‘Sparse’

LPN and LWE — Primal Form

“a
T

Random matrix Short secret Noise

LPN([): .<—$ I]:Z‘X”, I<—$ 5, «¢ Ber([,)" -

LPN([Fp): .<—$ [FZ/‘X”, I<—$., g Ber(l]:p)” -

‘Sparse’

LWE([Fp) . (_$ [I:ll;l’lxn, I (_$ [I:n, (_$ [_B, B]n <« ‘Small’

LPN and LWE

LPN and LWE — Dual Form

. - , .T + RJJ $
Parity-check Random matrix Short secret Noise
matrix of G

LPN(F): [F3, [l Fy. < Ber(F)" «_

LPN(F): .<—$ Fron, B g Fr, g Ber(F,)" -~

‘Sparse’

LWE([FP) . (_$ ”:li;an, I (_$ [I:I/l, (_$ [_B, B]n <« ‘Small’

LPN and LWE — Dual Form

bR

Random matrix Noise

PNE): [l <5 B3, s Ber®)"

PNG: [l <5 . < BerEy <

‘Sparse’

LWE(F,): <—$ | g [-B,B]" < Smal

=

\/_J Correctness

Claim: Pr[K = K'l ~ t?*/n < 1

K=ry-(H-s+r)=WH" 1) -s+ry-r

=pkg-s+rg-rl=K+e

Where Prle = 1] ~ °/n < 1

|

_ Alekhnovich Key Exchange

H "

=

Q

T .

-—- m--—-

\)

Pk

——

K

Correctness

Claim: Pr[K = K'l ~ t?*/n < 1

K=ry-(H-s+r)=WH" 1) -s+ry-r

=pkg-s+rg-rl=K+e

Where Prle = 1] ~ °/n < 1

_ Alekhnovich Key Exchange

Correctness

Claim: Pr[K = K'l ~ t?*/n < 1

K=ry-(H-s+r)=WH" 1) -s+ry-r
=pkg-s+r8-rl=K+e

Where Prle = 1] ~ °/n < 1

Alekhnovich Key Exchange

O\

Pk

S Correctness

Claim: Pr[K = K'l ~ t?*/n < 1

K=ry-(H-s+r)=WH" 1) -s+ry-r

=pkg-s+rg-rl=K+e

Where Prle = 1] ~ °/n < 1

Alekhnovich Key Exchange

Hamming weight ¢

Claim: Pr[K = K'l ~ t?*/n < 1

K=ry-(H-s+r)=WH" 1) -s+ry-r

=pkg-s+rg-rl=K+e

Where Prle = 1] ~ °/n < 1

BN Alekhinovich Key Exchange

A H'

r) Dual LPN Primal LPN 5!
Security M
K Follows from dual LPN + primal LPN

(The proof is standard)

o S -+ p—
- m-1 @
~
———————————————————————————

——

K

T ' =
& o “ I Q
Since the parties are computing an inner product to get K could we
embed an inner product computation?

—_ . — S
| o a4 |0
(—
Since the parties are computing an inner product to get K, could we
embed an inner product computation?

Input:
I Warmup attempt: only Bob has an input

o
v

Bob computes: Alice computes:

—_ . — S
| o a4 |
(—
Since the parties are computing an inner product to get K, could we
embed an inner product computation?

o
v

Input:
I Warmup attempt: only Bob has an input
Bob computes: Alice computes:
——

K

—_ . — S
N e a | 0
Ce———————————————————————————————
Since the parties are computing an inner product to get K, could we
embed an inner product computation?

o
v

Input:
I Warmup attempt: only Bob has an input
Bob computes: Alice computes:
g . = — 'I+ 7 'I+€ 57 I
T ——
K
—

K/

_ Inner Product in Alekhnovich’s Key Exchange
—_ . — S
I rO . H rl : Q
Since the parties are computing an inner product to get K, could we
embed an inner product computation?

o
v

Input:

I Warmup attempt: only Bob has an input

Bob computes: Alice computes:

5ol == -0+ s -I+e g
T —
K
v , . N

K’ K and K’ form (noisy) additive share of (x, s)

We are making progress — but s has to be random for primal LPN to hold!

o S -+ —
-1l @
=
A4 -—

How to embed Alice’s input in s?

o S -+ —
el @l e
- -
———————————————————————————

L4

Idea: split as H, | H,

o — o SO — o SO + o Sl
s
H H,|H, | H,)

; . so +
" - I
2 Q
Idea: splltHas HO\H1

A4

; . so +
" - I
2 Q
Idea: splltHas HO\H1

A4

S
I W
[J

- I

" - I

e ¥ C;
Idea: splltHas HO\H1

v

S
I W
[J

-

" - I

& ¥ (;
Idea: splltHas HO\H1

=—So—I 5 -, te SS

A4

o
—

§
o

N i

—_—
K :—.I

_nner Product in Alekhnovich’s Key Exchange

.S()—I— —

=

0

A4

Idea: spllt H as Ho | H1

R e el securty

Use primal LPN with matrix H,

for Alice, and dual LPN with
matrix H' for Bob

Hf'/ —
Bl

Embedding an Inner Product in Alekhnovich’s Key Exchange
ft ~ 100

. Sy 4
— pkg[zm dm H y1m g Pk,

-— - e

Efficiency

Communication: 2m from Bob and 4m from Alice with reasonable
parameters (m = |x| = |y|), (1 + &)m from each party
asymptotically (which is optimal)

Computation: cost dominatedbyv - H-v (<= v — H' -v), can
be O(m - log m) (LPN with quasi-cyclic codes, standard) or even

\ O(m) (Druk-Ishai codes, slightly more exotic)

Pk

Use primal LPN with matrix H,

for Alice, and dual LPN with
matrix H' for Bob

Multiparty Inner Product with Leakage

The protocol has t/n correctness error. Y1 Y3

A In MPC, correctness errors translate to leakage
when a ‘detectable’ error occurs: the server learns an
equation (v, r) with v known and r the noise vector.

— leaks ~ N - t*/n linear equations in 7 if the client
interacts with /V servers.

—> still secure under the LPN with leakage
assumption (equivalent to standard LPN, but with a loss)

Multiparty Inner Product with Leakage

The protocol has t/n correctness error. Y1 Y3

A In MPC, correctness errors translate to leakage
when a ‘detectable’ error occurs: the server learns an
equation (v, r) with v known and r the noise vector.

— leaks ~ N - t*/n linear equations in 7 if the client () () ()
interacts with /V servers.

—> still secure under the LPN with leakage
assumption (equivalent to standard LPN, but with a loss)

Alternatives

The above is fine when NV is not too large. For large NV, () (5 (5 G
or when overwhelming correctness matters (e.g. for T T T T

biometric authentication), two alternatives:

1. We give an LWE-based variant with negligible error

2. We describe a way to remove errors via a sublinear-
communication preprocessing phase

(q/p) -

= — g ml-0+ Wi, te

e =1, - ry with rg, ry in [-B, B]”
— e <n-B*

K/

kXn
I cz, € Z,

e =1, - ry with rg, ry in [-B, B]”
—e¢<n-B?

Rounding Lemma: if g/(p - |e|) > A”D, then [(p/q) - K’| mod p and
[(p/q) - K'| mod p form additive shares of (x, y) with proba 1 — negl(4).

A Variant under LWE

e =1, - ry with rg, ry in [-B, B]”
—e¢<n-B?

Rounding Lemma: if g/(p - |e|) > A?D, then [(p/q) - K’| mod p and
[(p/q) - K'| mod p form additive shares of (x, y) with proba 1 — negl(4).

[(p/q) - K'| mod p

A Variant under LWE

e =1, - ry with rg, ry in [-B, B]”
—e¢<n-B?

Rounding Lemma: if g/(p - |e|) > A”D, then [(p/q) - K’| mod p and

[(p/q) - K'| mod p form additive shares of (x, y) with proba 1 — negl(4).

[(p/q) - K'| mod p —I— Negligible correctness error & leakage

= |Larger communication overhead

Preprocessing phase

Functionality

(79> o) Samples f-sparse vectors (7, ;) and (71,51
set (sg, §1) < Share({ry, 1))

Preprocessing phase

Functionality

(79> o) Samples f-sparse vectors (7, ;) and (71,51
set (sg, §1) < Share({ry, 1))

Removing Errors via Preprocessing

Preprocessing phase

Functionality

(79, 5p) Samples f-sparse vectors (7, 1) and (71,51)
set (s, §1) < Share({(ry, 7))

= (X,y) — (rp, 1) + (5o + 57)
= (X, y)

Removing Errors via Preprocessing

Preprocessing phase

Functionality

(79, 5p) Samples f-sparse vectors (7, 1) and (71,51)
set (s, §1) < Share({(ry, 7))

Implementing the preprocessing

Removing Errors via Preprocessing

Preprocessing phase

Functionality

(79, 5p) Samples f-sparse vectors (7, 1) and (71,51)
set (s, §1) < Share({(ry, 7))

In?plementing the preprocessing

Write 7, = Z r(g_i) where the r((f) are unit vectors 0 - 0v’0 - 0

i=1 kA@
LS m e L
Then: <r0, r1> — Z Z <7’(l), rl(])> — Z Z [k((;) =2 kg])] , V(gl)vl(])
i=1 j=I i=1 j=1 ——~— ——
Secure Equality Test OLE

—> 5, S| can be securely computed using O(t* - log n) communication

Removing Errors via Preprocessing

Preprocessing phase

Functionality

(79, 5p) Samples f-sparse vectors (7, 1) and (71,51)
set (s, §1) < Share({(ry, 7))

In?plementing the preprocessing

Write 7, = Z r(g_i) where the r((f) are unit vectors 0 - 0v’0 - 0

i=1 kA@
LS m e L
Then: <r0, r1> — Z Z <7’(l), rl(])> — Z Z [k((;) =2 kg])] , V(gl)vl(])
i=1 j=I i=1 j=1 ——~— ——
Secure Equality Test OLE

—> 5, S| can be securely computed using O(t* - log n) communication

Improved version: using LPN with regular noise brings the cost down to O(z - log n)

r0= O"'OVIO"'OO"'OV20"'O O“'OV3O'“O O'”OV40‘”O

In the malicious setting, Alice and Bob must prove that pk ,, pk, are well-formed

N IR

.s0_|_

o)
A4

In the malicious setting, Alice and Bob must prove that pk ,, pk, are well-formed

.s0_|_

H

In the malicious setting, Alice and Bob must prove that pk ,, pk, are well-formed

A mm ¢ ¢ H
= . mm @ 1

ZK: knows a sparse 1, such that H, - ry = pkg ZK: knows sparse r| such that 3s, H - s + r; = pk;

In the malicious setting, Alice and Bob must prove that pk ,, pk, are well-formed

. S0 +

-— - e

ZK: knows a sparse 1, such that H, - ry = pkg ZK: knows sparse r| such that 3s, H - s + r; = pk;

We introduce a new efficient ZKPoK for LPN relations, with communication O(t - log n)

H

Malicious Security

In the malicious setting, Alice and Bob must prove that pk ,, pk, are well-formed

. 5o +

ZK: knows a sparse r such that H) - 1y = pkg ZK: knows sparse r| such that 3s, H - s + r; = pk;

We introduce a new efficient ZKPoK for LPN relations, with communication O(t - log n)

Recent works on pseudorandom correlation generator show how to distribute shares of A - r
where r € [FZ is 1-sparse, and A € [Fpk, via function secret sharing (which exist under OWF)

—> we use these techniques to authenticate the noise vectors with a MAC A

—> we use the MAC to check the correct computation of the pkfs, al la SPDZ.

Questions?

