Secure Computation

Protecting the Privacy of Data used in Distributed Computation

e,

Q

Geoffroy Couteau

@ 'Y

Universite
de Paris

Are our Interactions over Large Networks Secure”

Are our Interactions over Large Networks Secure”

Our Communications are Mostly* Secure

Whenever we browse the web, use a website or an app, send a message, or
make a call, we communicate over a network, and the content of our
communication is private information. Most of the time*, this communication
happens securely:

N%&=%&
g* (%=

lllllllllllllllllllllllll

® Since 2020, around 85% of the total internet traffic is encrypted
® End-to-end encryption is becoming a standard on most messaging apps

@ Cellular networks in France encrypt all communications by default

* not always!

But our Computations are not!

rks has
er we...

But our Computations are not!

networks has
henever we...

Get a recommendation
on a streaming platform

NNNNNNN

But our Computations are not!

f networks has
henever we...

Use a dating app

N

Get a recommendation
on a streaming platform

NNNNNNN

But our Computations are not!

f networks has
henever we...

Use a dating app

N

Search over our
Cloud storage

<% " g~
IS N
. :

Get a recommendation
on a streaming platform

NNNNNNN

But our Computations are not!

f networks has
henever we...

Use a dating app

Search over our
Cloud storage

Use a
healthcare

app

Get a recommendation
on a streaming platform

NNNNNNN

But our Computations are not!

f networks has
whenever we...

See a targeted
advertising

YOU SAW THEM IN m

Now Try Them On
Yes —they’re here! Those fas'hi.on-

Use a dating app

Search over our

Use a
healthcare

Get a recommendation
on a streaming platform

‘ NETFLIX

But our Computations are not!

f networks has
whenever we...

See a targeted
advertising

Use a social network

Use a dating app
e Search over our

Use a
healthcare

app

Get a recommendation
on a streaming platform

But our Computations are not!

of networks has
whenever we...

See a targeted
advertising

Use a social network

Use a dating app
-~ Search over our

Use a
healthcare

Get a recommendation
on a streaming platform

But our Computations are not!

f networks has
whenever we...

See a targeted
advertising

Use a social network

YOU SAW THEM IN m

aaaaaa
advisory

xxxxx

Use a dating app

Search over our

Use a
healthcare

Get a recommendation
on a streaming platform

Our private
used in comp

A Paradoxical Situation

We become increasingly aware of the need for privacy in communications
® Over the web
® When using messaging apps

We are strongly incentivized to distribute our private data
@ To benefit from Al-driven apps (‘}photos, % health apps...)
@ To use social networks (friend recommendations, curated timelines...)

And our data is becoming extremely valuable
@ For targeted advertising
@ To train machine learning algorithms (e.g. to find new treatments)

As a result, we protect our privacy whenever we communicate, but give up on it

whenever computations are required... Which happens on a daily basis.

A Paradoxical Situation

We become increasingly aware of the need for privacy in communications
® Over the web
® When using messaging apps

We are strongly incentivized to distribute our private data
@ To benefit from Al-driven apps (‘;photos, % health apps...)
@ To use social networks (friend recommendations, curated timelines...)

And our data is becoming extremely valuable
@ For targeted advertising
@ To train machine learning algorithms (e.g. to find new treatments)

A The solution is not to « tell users to be careful ». It is unrealistic:

* [o hope that users will stop using apps and social networks, and
* Jo give up on societal benefits of computations on private data.

A Paradoxical Situation

We become increasingly aware of the need for privacy in communications
® Over the web
® When using messaging apps

We are strongly incentivized to distribute our private data
@ To benefit from Al-driven apps (‘}photos, % health apps...)
@ To use social networks (friend recommendations, curated timelines...)

And our data is becoming extremely valuable
@ For targeted advertising
@ To train machine learning algorithms (e.g. to find new treatments)

Secure computation aims to reconcile the (individual, societal) benefits
of computations on data with the need to protect its privacy.

What is Secure Computation”

Protecting traditional uses of networks Protecting modern uses of networks
Secure communication Secure computation
Goal: communicating a secret message Goal: computing (public) functions on secret inputs

e |

Output: Bob learns m Output: Alice learns]64()6, y) and Bob learn f B(x, y)
Security: Eve learns nothing Security: Alice and Bob learn nothing else

Solved by encryption Encryption is « all or nothing »

Locks the message in a digital « box » x It does not allow a fine-grained access to
Only the owner of the key can read it some specific information about the data

v

What is Secure Computation”

Protecting traditional uses of networks Protecting modern uses of networks
Secure communication Secure computation
Goal: communicating a secret message Goal: computing (public) functions on secret inputs

Output: Bob learns m Output: Alice learns]64()6, y) and Bob learn f B(x, y)
Security: Eve learns nothing Security: Alice and Bob learn nothing else

Solved by encryption Encryption is « all or nothing »

Locks the message in a digital « box » x It does not allow a fine-grained access to
Only the owner of the key can read it some specific information about the data

v

Secure computation is the area of security that studies techniques and
protocols to allow computing public functions on private inputs

What is Secure Computation”

Protecting traditional uses of networks Protecting modern uses of networks
Secure communication Secure computation
Goal: communicating a secret message Goal: computing (public) functions on secret inputs

Output: Bob learns m Output: Alice learns]64()6, y) and Bob learn f B(x, y)
Security: Eve learns nothing Security: Alice and Bob learn nothing else

* Secure computation is a more fine-grained approach to security: the function
controls precisely what is learned (secure communication is all or nothing)

* |t is much more demanding: now the adversary is internal (Alice must be
protected against Bob, and Bob against Alice), and can influence the protocol!

What is Secure Computation”

More generally, n participants P, ---, P, with private inputs x{, ---, x, wish to
distributively compute (y;, ---,y,) < f(x;, -*, x,,) such that

» Correctness: at the end of the interaction, P, learns y;
* Security: no coalition of parties learns anything beyond their own inputs and outputs

What is Secure Computation”

Study of
medication effect

@ —@E
/

5 @ﬁ\@ -

Example. n hospitals want to jointly perform statistical tests, or run ML algorithms,
on the private data of their patients, to

» Uncover correlations between medical conditions and patient information
» Study the effect of medications
» Discover new treatments

A Brief History of Secure Computation

|

\

A Brief History of Secure Computation

Yao, 1986 (two parties)
GMW, 1987 (n parties)

J Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of
communication...

A Brief History of Secure Computation

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness

Secure computation can
be precomputed before
iInputs are known

J Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of
communication...

A Brief History of Secure Computation

OoT
extension

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness Beaver, 1996

Secure computation can
be precomputed before
iInputs are known

Almost all expensive
operations can be replaced
by cheap operations

Mostly theoretical result,
and still requires heavy
communication

/ Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of
communication...

A Brief History of Secure Computation

OoT
extension

Almost all expensive
J operations can be replaced
by cheap operations

Mostly theoretical result,
and still requires heavy
communication

e oo

/ Makes Beaver 1996 truly practical:

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness Beaver, 1996

Secure computation can
be precomputed before
iInputs are known

/ Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of
communication...

MPC is now efficient!

x Still requires heavy communication

A Brief History of Secure Computation

OoT
extension

Almost all expensive
J operations can be replaced
by cheap operations

Mostly theoretical result,
and still requires heavy
communication

e oo

/ Makes Beaver 1996 truly practical:

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness Beaver, 1996

Secure computation can
be precomputed before
iInputs are known

/ Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of
communication...

Many follow-ups

MPC is now efficient!

x Still requires heavy communication

A Brief History of Secure Computation

OoT
extension

Almost all expensive
(operations can be replaced
by cheap operations
Mostly theoretical result,

and still requires heavy
communication

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness Beaver, 1996

Secure computation can
be precomputed before
iInputs are known

J Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of

communication...
‘ Q ‘ ‘ / Makes Beaver 1996 truly practical:

MPC is now efficient!
/ Suddenly, n party, actively-secure
MPC becomes a reality

remains very slow

x Still requires heavy communication

x Still requires heavy comm.

The MPC explosion
Tons of follow-ups, improvements,
first real-world deployments...

A Brief History of Secure Computation

OoT
extension

Almost all expensive
(operations can be replaced
by cheap operations
Mostly theoretical result,

and still requires heavy
communication

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness Beaver, 1996

Secure computation can
be precomputed before
iInputs are known

J Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of

communication...
‘ Q ‘ ‘ / Makes Beaver 1996 truly practical:

MPC is now efficient!
/ Suddenly, n party, actively-secure
MPC becomes a reality

remains very slow

x Still requires heavy communication

The MPC explosion Many follow-ups
Tons of follow-ups, improvements,
first real-world deployments...

x Still requires heavy comm.

A Brief History of Secure Computation

OoT
extension

Almost all expensive
(operations can be replaced
by cheap operations
Mostly theoretical result,

and still requires heavy
communication

Yao, 1986 (two parties)
GMW, 1987 (n parties)

Beaver, 1995)Correlated randomness Beaver, 1996

Secure computation can
be precomputed before
iInputs are known

J Secure computation
IS possible in theory
x Very slow In practice: billions

of expensive operations, TB of

communication...
‘ 0 ‘ ‘ / Makes Beaver 1996 truly practical:

MPC is now efficient!
/ Suddenly, n party, actively-secure
MPC becomes a reality

remains very slow

x Still requires heavy communication

x Still requires heavy comm. ‘ 0 ‘ 0

The MPC explosion Many follow-ups - / Only lightweight communication
Tons of follow-ups, improvements, BCGl, 2018

first real-world deployments... Pseudorandom correlations x Mostly for two parties

Secure Computation from Oblivious Transfer

Oblivious Transfer

A minimal example of secure computation...

*-—0o-1%

(S()a S 1)
Output: Bob learns s,

Security: Alice does not learn b, Bob does
not learn §,_,.

Secure Computation from Oblivious Transfer

Oblivious Transfer Secure Computation for all functions
A minimal example of secure computation... Which suffices for all functions!

(S()a S 1)
Output: Bob learns s,

Output: Alice learns f,(x, y), Bob learns fg(x, y)
Security: Alice does not learn b, Bob does

not learn §,_,.

Security: Alice and Bob learn nothing else

Secure Computation from Oblivious Transfer

Oblivious Transfer Secure Computation for all functions
A minimal example of secure computation... Which suffices for all functions!

(S()a S 1)
Output: Bob learns s,

X
Output: Alice learns f,(x, y), Bob learns fz(x,y)

Security: Alice does not learn b, Bob does
not learn §,_,.

Security: Alice and Bob learn nothing else

1. Use (additive) secret sharing 2. Write the function as a circuit 3. Use OT to compute the gates
i) (o)Cs) (a) Q) ()@ (s share(x,y) = share(GATE(x,y))
@ @ @ @ I’ll skip the details for now, but feel
@ @ free to ask for them!

&

Precomputing Oblivious Transfers (Beaver, 1995)

Given a random oblivious transfer, two parties can
construct a standard oblivious transfer

YQ"/- ﬁ \)
’ Random OT ’

(S()a Sl) b

The (simple) protocol:

» If a = b and Bob gets (5o D ry, s; D r{), he can get
S, = S, since he knows only r, = r,.

 If a =1 — b and Bob gets (sy D ry, s; D ry), he again
gets s, since he knows only r{_,,.

« Bob simply tells Alice whether a = b (leaks nothing

since a is random!), and Alice sends the appropriate
pair.

Precomputing Oblivious Transfers (Beaver, 1995)

Given a random oblivious transfer, two parties can
construct a standard oblivious transfer

V ﬁ \)
’ Random OT !

(S()a Sl) b

The (simple) protocol:

» If a = b and Bob gets (5o D ry, s; D r{), he can get
S, = S, since he knows only r, = r,.

 If a =1 — b and Bob gets (sy D ry, s; D ry), he again
gets s, since he knows only r{_,,.

« Bob simply tells Alice whether a = b (leaks nothing

since a is random!), and Alice sends the appropriate
pair.

The protocol is:

* Perfectly secure (no assumption required)
* Very fast: only three bits exchanged per OT

—> Almost all computations can be executed ahead of
time to precompute many OTs

—> Reduces efficient secure computation to the task of
securely and efficiently distributing long correlated

strings (here, random pairs (7, r;) an (a, r,))

Precomputing Oblivious Transfers (Beaver, 1995)

Given a random oblivious transfer, two parties can The protocol is:

construct a standard oblivious transfer . .
* Perfectly secure (no assumption required)

* Very fast: only three bits exchanged per OT

+

m»vo "
/‘ ‘l \) — Almost all computations can be executed ahead of
Random OT time to precompute many OTs
o e e e e m e e e e e e e e e e e e memmememmmmmmmmmmm— o
’ ’ ' —> Reduces efficient secure computation to the task of .
, securely and efficiently distributing long correlated , '
(SOa Sl) b E strings (here, random pairs (ry, ;) an (a, r,)) E
The (simple) protocol: Ishai-Killian-Nissim-Petrank 2003:

e If a = b and Bob gets (s, @ ry, 5; D ry), he can get

S, =S, since he knows only r, =T, Computing n random OTs can be done using
v 128 « base » oblivious transfers
¥’ 3 evaluations of a hash function per OT

¥ ~ 100 bits of communication per OT

 If a =1 — b and Bob gets (sy D ry, s; D ry), he again
gets s, since he knows only r;_,.

« Bob simply tells Alice whether a = b (leaks nothing

since a is random!), and Alice sends the appropriate
pair.

Just to Get a Sense of Scales...

 Edit distance: number of insertions, deletions, and substitutions

to convert one string into another
* Widely used to measure similarities, e.g. in genomics
* This is by all mean a relatively simple function

Just to Get a Sense of Scales...

 Edit distance: number of insertions, deletions, and substitutions

to convert one string into another
* Widely used to measure similarities, e.g. iIn genomics
* This is by all mean a relatively simple function

Assume Alice and Bob want to securely compute the edit distance between 512-byte inputs (that is,
small inputs). This requires:

* Converting the function to a boolean circuit = 5,901,194,475 AND gates according to [1]
e Securely computing the circuit = 5,901,194,475 X 100 bits &~ 70 Gigabytes of communication

This Is doable but expensive, and communication is typically the bottleneck in secure computation
protocols.

[1] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious adversaries. In Proceedings of the
21st USENIX conference on Security symposium, Security’12, pages 14—-14, Berkeley, CA, USA, 2012. USENIX Association.

Just to Get a Sense of Scales...

 Edit distance: number of insertions, deletions, and substitutions

to convert one string into another
* Widely used to measure similarities, e.g. in genomics
* This is by all mean a relatively simple function

Assume Alice and Bob want to securely compute the edit distance between 512-byte inputs (that is,
small inputs). This requires:

* Converting the function to a boolean circuit = 5,901,194,475 AND gates according to [1]
o Securely computing the circuit = 5,901,194,475 X 100 bits ~ 70 Gigabytes of communication

This Is doable but expensive, and communication is typically the bottleneck in secure computation
protocols.

—> Can we precompute random OTs using much less communication?

[1] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious adversaries. In Proceedings of the
21st USENIX conference on Security symposium, Security’12, pages 14—14, Berkeley, CA, USA, 2012. USENIX Association.

Back to Secure Computation

Pseudorandom correlation generators, introduced in my CCS’2018 paper with Boyle, Gilboa,
and Ishai, provide a way to generate n pseudo-random OTs using almost no communication

Back to Secure Computation

Pseudorandom correlation generators, introduced in my CCS’2018 paper with Boyle, Gilboa,
and Ishai, provide a way to generate n pseudo-random OTs using almost no communication

Boyle-C-Gilboa-Ishai 2018 and

Ishai-Killian-Nissim-Petrank 2003: Boyle-C-Gilboa-Ishai-Kohl-Scholl 2019:
Computing n random OTs can be done using Computing n random OTs can be done using
v 128 « base » oblivious transfers v’ A few hundred « base » oblivious transfers
¥’ 3 evaluations of a hash function per OT ¥ 2 evaluations of a hash function per OT
X ~ 100 bits of communication per OT v’ ~ 0 bits of communication per OT

? Computing an n-by-2n matrix-vector product

Back to Secure Computation

Pseudorandom correlation generators, introduced in my CCS’2018 paper with Boyle, Gilboa,
and Ishai, provide a way to generate n pseudo-random OTs using almost no communication

Boyle-C-Gilboa-Ishai 2018 and

Ishai-Killian-Nissim-Petrank 2003: Boyle-C-Gilboa-Ishai-Kohl-Scholl 2019:
Computing n random OTs can be done using Computing n random OTs can be done using
v 128 « base » oblivious transfers v’ A few hundred « base » oblivious transfers
¥’ 3 evaluations of a hash function per OT ¥ 2 evaluations of a hash function per OT
X ~ 100 bits of communication per OT v’ ~ 0 bits of communication per OT

? Computing an n-by-2n matrix-vector product

» Choosing the « right » matrix is related to deep questions in coding theory
- Latest exciting works (CRR’21, BCGIKS’22) provide extremely efficient instantiations
» Many fundamental questions remain partially open:
= Achieving more powerful correlations (related to deep questions in algebraic coding theory)

= Extending efficiently to n parties (currently works best for two parties)
- mEn

A 10s Walkthrough of the Core |deas

Reminder: Alice and Bob want to get many (pseudorandom) oblivious transfers from short seeds.

Step 1. Design a strategy, using cryptographic techniques, to get Step 2. Scramble the bits using a large, public, structured,
a solution when Bob’s selection bits are all equal to 0 except . compressive matrix multiplication

2

2 .., %

seed) =" seedp

Gen(1%) L] &, .
Bl

Bl
ol
Bl
) o

The natural way to attack is to distinguish from random by looking for a biasin H - b, i.e., finding v s.t. v T - H - ? is biased
& (V- H, b) = 0 with high probability

&= 7V has low weight... Which is impossible when HT generates a good code

—> the goal is to find structured good codes where the computation of x — H!' - x is very fast

Thank You for Your Attention!

Questions?

L icenses

All Images used in this talk are either

 Made on Keynote directly, or

e Taken from Wikimedia common, under the ShareAlike 3.0 (CC BY-SA 3.0) license (https://
creativecommons.org/licenses/by-sa/3.0/), or

* Taken from Pixabay, under the public domain certification (https://creativecommons.org/
licenses/publicdomain/)

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/publicdomain/
https://creativecommons.org/licenses/publicdomain/

Secure Computation from Oblivious Transfer
Step-by Step Solution

Warm-up |: 2-Party Product Sharing

‘Secure Product’

Functionality

Y1 Y2

(y1,y2) random conditioned on y; @ yo = 122

Warm-up ll: Variant

This time, Alice and Bob start with shares of values (X,y), and want to compute shares of the product x.y

P _ .
g ‘Secure Shared
v Product’
(b17 b2)
21 <2

(a1,b1) are shares of x
(asz,bs) are shares of y
(21, 22) are random shares of z =z - y

® We use an OT functionality where Alice is the receiver, and her selection bit is her input 9
e What should be Bob’s input? Let’s work out the equation:

Sz, = T+ 81 + (Z2) * S0 — EB Szs =[(80 D 51)]' X2

= To * 8 @ 1@56 * S
251 O (2) * S0 Share of Bob This should be 1

= S0 D (80 D 31) * L2 :} (30, 31) are (2,2)-shares of I'1.

Solution

o

by ‘Secure Product’
Functionality

v

(b17 b2) U1

Ty = (a1+0b1)- (az + b2)

=a1 - a2 +[al : bz)'l‘[az . bl)-l-[bl y bg) : /ul\'*' :Ul\'*' 'bl - bo]

A

o)

v

Value known to Alice T T Value known to Bob Q
J Y & 2/+\’02} +|a1-a2'

+
Uu
[Each of these values is the product of a value known l

to Alice and a value known to Bob

.

