Secure Computation

Protecting the Privacy of Data used in Distributed Computation

Geoffroy Couteau

Are our Interactions over Large Networks Secure?

Are our Interactions over Large Networks Secure?

Our Communications are Mostly* Secure

Whenever we browse the web, use a website or an app, send a message, or make a call, we **communicate over a network**, and the content of our communication is private information. Most of the time*, this communication happens **securely**:

- Since 2020, around 85% of the total internet traffic is encrypted
- End-to-end encryption is becoming a standard on most messaging apps
- Cellular networks in France encrypt all communications by default

A Paradoxical Situation

We become increasingly aware of the need for privacy in communications

- Over the web
- When using messaging apps

We are strongly incentivized to distribute our private data

- To benefit from Al-driven apps (photos, health apps...)
- To use social networks (friend recommendations, curated timelines...)

And our data is becoming extremely valuable

- For targeted advertising
- To train machine learning algorithms (e.g. to find new treatments)

As a result, we protect our privacy whenever we communicate, but give up on it whenever computations are required... Which happens on a daily basis.

A Paradoxical Situation

We become increasingly aware of the need for privacy in communications

- Over the web
- When using messaging apps

We are strongly incentivized to distribute our private data

- To benefit from Al-driven apps (photos, health apps...)
- To use social networks (friend recommendations, curated timelines...)

And our data is becoming extremely valuable

- For targeted advertising
- To train machine learning algorithms (e.g. to find new treatments)

The solution is **not** to « tell users to be careful ». It is unrealistic:

- To hope that users will stop using apps and social networks, and
- To give up on societal benefits of computations on private data.

A Paradoxical Situation

We become increasingly aware of the need for privacy in communications

- Over the web
- When using messaging apps

We are strongly incentivized to distribute our private data

- To benefit from Al-driven apps (photos, health apps...)
- To use social networks (friend recommendations, curated timelines...)

And our data is becoming extremely valuable

- For targeted advertising
- To train machine learning algorithms (e.g. to find new treatments)

Secure computation aims to reconcile the (individual, societal) benefits of computations on data with the need to protect its privacy.

Protecting traditional uses of networks

Secure communication

Goal: communicating a secret message

Solved by encryption

Locks the message in a digital « box »
Only the owner of the key can read it

Protecting modern uses of networks

Secure computation

Goal: computing (public) functions on secret inputs

Encryption is « all or nothing » It does not allow a *fine-grained* access to some *specific* information about the data

Protecting traditional uses of networks

Secure communication

Goal: communicating a secret message

Solved by encryption

Locks the message in a digital « box » Only the owner of the key can read it

Protecting modern uses of networks

Secure computation

Goal: computing (public) functions on secret inputs

Encryption is « all or nothing » It does not allow a *fine-grained* access to some *specific* information about the data

Secure computation is the area of security that studies techniques and protocols to allow computing public functions on *private* inputs

Protecting traditional uses of networks

Secure communication

Goal: communicating a secret message

Protecting modern uses of networks

Secure computation

Goal: computing (public) functions on secret inputs

- Secure computation is a more *fine-grained* approach to security: the function controls precisely what is learned (secure communication is *all or nothing*)
- It is much more demanding: now the adversary is *internal* (Alice must be protected against Bob, and Bob against Alice), and can influence the protocol!

More generally, n participants P_1, \dots, P_n with private inputs x_1, \dots, x_n wish to distributively compute $(y_1, \dots, y_n) \leftarrow f(x_1, \dots, x_n)$ such that

- Correctness: at the end of the interaction, P_i learns y_i
- Security: no coalition of parties learns anything beyond their own inputs and outputs

Example. *n* hospitals want to jointly perform statistical tests, or run ML algorithms, on the private data of their patients, to

- Uncover correlations between medical conditions and patient information
- Study the effect of medications
- Discover new treatments

•

The MPC explosion

Tons of follow-ups, improvements, first real-world deployments...

first real-world deployments...

Oblivious Transfer

A minimal example of secure computation...

Output: Bob learns S_h

Security: Alice does not learn b, Bob does

not learn s_{1-b} .

Oblivious Transfer

A minimal example of secure computation...

Output: Bob learns S_b

Security: Alice does not learn b, Bob does

not learn s_{1-b} .

Secure Computation for all functions

Which suffices for all functions!

Output: Alice learns $f_A(x, y)$, Bob learns $f_B(x, y)$

Security: Alice and Bob learn nothing else

Oblivious Transfer

A minimal example of secure computation...

Output: Bob learns S_b

Security: Alice does not learn b, Bob does

not learn s_{1-b} .

Secure Computation for all functions

Which suffices for all functions!

Output: Alice learns $f_A(x, y)$, Bob learns $f_B(x, y)$

Security: Alice and Bob learn nothing else

1. Use (additive) secret sharing

2. Write the function as a circuit

3. Use OT to compute the gates

 $share(x, y) \implies share(GATE(x, y))$

I'll skip the details for now, but feel free to ask for them!

Precomputing Oblivious Transfers (Beaver, 1995)

Given a random oblivious transfer, two parties can construct a standard oblivious transfer

The (simple) protocol:

- If a=b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b=s_a$, since he knows only $r_b=r_a$.
- If a=1-b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again gets s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a=b (leaks nothing since a is random!), and Alice sends the appropriate pair.

Precomputing Oblivious Transfers (Beaver, 1995)

Given a random oblivious transfer, two parties can construct a standard oblivious transfer

The (simple) protocol:

- If a=b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b=s_a$, since he knows only $r_b=r_a$.
- If a=1-b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again gets s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a=b (leaks nothing since a is random!), and Alice sends the appropriate pair.

The protocol is:

- Perfectly secure (no assumption required)
- Very fast: only three bits exchanged per OT
- → Almost all computations can be executed ahead of time to precompute many OTs
- \implies Reduces *efficient secure computation* to the task of securely and efficiently **distributing long correlated** strings (here, random pairs (r_0, r_1) an (a, r_a))

Precomputing Oblivious Transfers (Beaver, 1995)

Given a random oblivious transfer, two parties can construct a standard oblivious transfer

The (simple) protocol:

- If a=b and Bob gets $(s_0 \oplus r_0, s_1 \oplus r_1)$, he can get $s_b=s_a$, since he knows only $r_b=r_a$.
- If a=1-b and Bob gets $(s_0 \oplus r_1, s_1 \oplus r_0)$, he again gets s_b , since he knows only r_{1-b} .
- Bob simply tells Alice whether a=b (leaks nothing since a is random!), and Alice sends the appropriate pair.

The protocol is:

- Perfectly secure (no assumption required)
- Very fast: only three bits exchanged per OT

Almost all computations can be executed ahead of time to precompute many OTs

 \Longrightarrow Reduces *efficient secure computation* to the task of securely and efficiently **distributing long correlated** strings (here, random pairs (r_0, r_1) an (a, r_a))

Ishai-Killian-Nissim-Petrank 2003:

Computing n random OTs can be done using

- √ 128 « base » oblivious transfers
- √ 3 evaluations of a hash function per OT

Just to Get a Sense of Scales...

- Edit distance: number of insertions, deletions, and substitutions to convert one string into another
- Widely used to measure similarities, e.g. in genomics
- This is by all mean a relatively simple function

Just to Get a Sense of Scales...

- Edit distance: number of insertions, deletions, and substitutions to convert one string into another
- Widely used to measure similarities, e.g. in genomics
- This is by all mean a relatively simple function

Assume Alice and Bob want to securely compute the edit distance between 512-byte inputs (that is, small inputs). This requires:

- Converting the function to a boolean circuit => 5,901,194,475 AND gates according to [1]
- Securely computing the circuit \Longrightarrow 5,901,194,475 \times 100 bits \approx 70 Gigabytes of communication

This is doable but expensive, and communication is typically the bottleneck in secure computation protocols.

[1] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious adversaries. In Proceedings of the 21st USENIX conference on Security symposium, Security'12, pages 14–14, Berkeley, CA, USA, 2012. USENIX Association.

Just to Get a Sense of Scales...

- Edit distance: number of insertions, deletions, and substitutions to convert one string into another
- Widely used to measure similarities, e.g. in genomics
- This is by all mean a relatively simple function

Assume Alice and Bob want to securely compute the edit distance between 512-byte inputs (that is, small inputs). This requires:

- Converting the function to a boolean circuit => 5,901,194,475 AND gates according to [1]
- Securely computing the circuit \Longrightarrow 5,901,194,475 \times 100 bits \approx 70 Gigabytes of communication

This is doable but expensive, and communication is typically the bottleneck in secure computation protocols.

Can we precompute random OTs using much less communication?

[1] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious adversaries. In Proceedings of the 21st USENIX conference on Security symposium, Security'12, pages 14–14, Berkeley, CA, USA, 2012. USENIX Association.

Back to Secure Computation

Pseudorandom correlation generators, introduced in my CCS'2018 paper with Boyle, Gilboa, and Ishai, provide a way to generate *n* pseudo-random OTs using almost no communication

Back to Secure Computation

Pseudorandom correlation generators, introduced in my CCS'2018 paper with Boyle, Gilboa, and Ishai, provide a way to generate *n* pseudo-random OTs using almost no communication

Ishai-Killian-Nissim-Petrank 2003:

Computing *n* random OTs can be done using

- √ 128 « base » oblivious transfers
- √ 3 evaluations of a hash function per OT

Boyle-C-Gilboa-Ishai 2018 and Boyle-C-Gilboa-Ishai-Kohl-Scholl 2019:

Computing *n* random OTs can be done using

- ✓ A few hundred « base » oblivious transfers
- √ 2 evaluations of a hash function per OT
- √ ~ 0 bits of communication per OT
- Computing an n-by-2n matrix-vector product

Back to Secure Computation

Pseudorandom correlation generators, introduced in my CCS'2018 paper with Boyle, Gilboa, and Ishai, provide a way to generate *n pseudo*-random OTs using almost no communication

Ishai-Killian-Nissim-Petrank 2003:

Computing n random OTs can be done using

- √ 128 « base » oblivious transfers
- √ 3 evaluations of a hash function per OT

Boyle-C-Gilboa-Ishai 2018 and Boyle-C-Gilboa-Ishai-Kohl-Scholl 2019:

Computing n random OTs can be done using

- ✓ A few hundred « base » oblivious transfers
- √ 2 evaluations of a hash function per OT
- \checkmark ~ 0 bits of communication per OT
- Computing an n-by-2n matrix-vector product
- Choosing the « right » matrix is related to deep questions in coding theory
- Latest exciting works (CRR'21, BCGIKS'22) provide extremely efficient instantiations
- Many fundamental questions remain partially open:
 - → Achieving more powerful correlations (related to deep questions in algebraic coding theory)
 - \rightarrow Extending efficiently to n parties (currently works best for two parties)

→ ...

A 10s Walkthrough of the Core Ideas

Reminder: Alice and Bob want to get many (pseudorandom) oblivious transfers from short seeds.

Step 1. Design a strategy, using cryptographic techniques, to get a solution when Bob's selection bits are all equal to 0 except *t*.

Step 2. Scramble the bits using a large, public, structured, compressive matrix multiplication

The natural way to attack is to distinguish from random by looking for a bias in $H \cdot \overrightarrow{b}$, i.e., finding \overrightarrow{v} s.t. $\overrightarrow{v}^{\dagger} \cdot H \cdot \overrightarrow{b}$ is biased

- $\iff \langle \overrightarrow{v} \cdot H, \overrightarrow{b} \rangle = 0$ with high probability
- $\iff \overrightarrow{v}$ has low weight... Which is impossible when H^{\dagger} generates a good code
- \Longrightarrow the goal is to find structured good codes where the computation of $x \to H^\intercal \cdot x$ is very fast

Thank You for Your Attention!

Questions?

Licenses

All images used in this talk are either

- Made on Keynote directly, or
- Taken from Wikimedia common, under the ShareAlike 3.0 (CC BY-SA 3.0) license (https://creativecommons.org/licenses/by-sa/3.0/), or
- Taken from Pixabay, under the public domain certification (https://creativecommons.org/licenses/publicdomain/)

Backup Slides

Warm-up I: 2-Party Product Sharing

 (y_1, y_2) random conditioned on $y_1 \oplus y_2 = x_1 x_2$

Warm-up II: Variant

This time, Alice and Bob start with shares of values (x,y), and want to compute shares of the product x.y

- (a_1,b_1) are shares of x
- (a_2, b_2) are shares of y
- (z_1, z_2) are random shares of $z = x \cdot y$

Step-by Step Solution

- ullet We use an OT functionality where Alice is the receiver, and her selection bit is her input x_2
- What should be Bob's input? Let's work out the equation:

$$s_{x_2} = x_2 \cdot s_1 + (1 - x_2) \cdot s_0$$

$$= x_2 \cdot s_1 \oplus (1 \oplus x_2) \cdot s_0$$

$$= s_0 \oplus (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_{x_2} = (s_0 \oplus s_1) \cdot x_2$$

$$\Rightarrow s_0 \oplus s_1 \oplus s_2 \oplus s_2 \oplus s_3 \oplus s_3 \oplus s_3 \oplus s_4 \oplus s_4 \oplus s_3 \oplus s_4 \oplus s_4 \oplus s_4 \oplus s_3 \oplus s_4 \oplus$$

Solution

