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Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published ‘Breaking the Circuit Size Barrier 
for Secure Computation under DDH’ at CRYPTO’16
I was at the time a young 2nd-year PhD student

A few months and a CCS’17 paper later, we 
concluded that the answer was ‘not so much’

I got the feeling that this had to be useful to 
generate correlated randomness…



7 years later
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LPN is not LWE’s 
poor little brother

Deep connections 
to learning theory

Strong links with 
algebraic coding 

theory

Large-scale MPC on the 
internet is a possibility!

Fast MPC 
+ fun research

The Journey through Correlated Pseudorandomess
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Secure Computation…

• Goal. Computing a public function on secret inputs

• Model.  players, each with a private input  interacting through authenticated channelsn xi

x y

f : (x, y) ↦ (zA, zB)

• Output: Alice learns  and Bob learn 

• Security: Alice and Bob learn nothing else

zA zB



Get a recommendation 
on a streaming platform

Search over our 
Cloud storage

Use a dating app

See a targeted 
advertising

Use a social network

…
7

… Is a Practical Concern.

Use a 
healthcare 

app
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r ← 𝒟

MPC protocol

(r1, r2, r3, r4) ← 𝗌𝗁𝖺𝗋𝖾𝗌(r){Additive correlations

The Correlated Randomness Model
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(ai, bi)i≤n ← (𝔽2 × 𝔽2)n

GMW protocol

𝗌𝗁𝖺𝗋𝖾𝗌((ai, bi, ai ⋅ bi)i≤n){Example: Beaver triples

 bits /  gate 
for  parties

2N ∧
N

The Correlated Randomness Model

Very practical*



A Template to Instantiate Efficiently the 
Correlated Randomness Model 

Given a correlation , the dealer distributes shares of C C(r)

Distributing  succinctly⟨C(r)⟩



A Template to Instantiate Efficiently the 
Correlated Randomness Model 

Given a correlation , the dealer distributes shares of C C(r)

Distributing  succinctly⟨C(r)⟩

Pseudorandom correlation generator 
 such that


(1)  looks like  samples from the target 
correlation, and


(2)  looks ‘random conditioned on satisfying the correlation with 
’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B)
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𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)
𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)
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Preprocessing phase Online phase

‘Silent’ computation

The bulk of the preprocessing 
phase is offline: Alice and Bob 
stretch their seeds into large 
pseudorandom correlated strings.

𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽A) 𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽B)

One-time short interaction

𝗌𝖾𝖾𝖽A 𝗌𝖾𝖾𝖽B

Interactive protocol with short 
communication and computation; 
Alice and Bob store a small seed 
afterwards.

𝖦𝖾𝗇(1λ)

Non-cryptographic

Alice and Bob consume the 
preprocessing material in a fast, 
non-cryptographic online phase.


x y

f(x, y)

Pseudorandom correlation generator:  such that (1)  
looks like  samples from the target correlation, and (2)  looks ‘random conditioned on satisfying the 
correlation with ’ to Bob (similar property w.r.t. Alice).
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Q: What Correlations  do we Consider?C

Semi-honestMalicious

BooleanArithmetic

SpecializedUniversal

ID preprocII preproc

2 parties partiesN

SelectiveAdaptive

R: It depends! What MPC Protocol do you Want?

One does not simply build 
some MPC protocol

Depending on the application, you’ll want:

VOLE, OT, OLE, bilinear correlations, Beaver 
triples, authenticated Beaver triples, daBits, 
circuit-dependent correlations, polynomial 
correlations, matrix triples, OTTT… 
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Given a correlation , the dealer distributes shares of C C(r)

Distributing  succinctly⟨C(r)⟩

⟨C(r)⟩
Random coin

Correlation (function)

Shares
𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){

Function secret sharing

{Public function

{

Short seed



Function Secret Sharing
(𝖲𝗁𝖺𝗋𝖾( f ) ↦ ) 

𝖤𝗏𝖺𝗅(  +  , x) 𝖤𝗏𝖺𝗅(  = , x) f(x){FSS
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What Functions can be Shared?

f(0)
f(1)
f(2)

f(N)

f(3)
⋮

𝖥𝖲𝖲 . 𝖲𝗁𝖺𝗋𝖾( f )

f
Sharing an arbitrary function:



x x

x x
f(x)

What Functions can be Shared?

f
Sharing an arbitrary function:



x x

x x
f(x)

𝖥𝖲𝖲 . 𝖤𝗏𝖺𝗅( f )

What Functions can be Shared?

f
Sharing an arbitrary function:



x x

x x
f(x)

𝖥𝖲𝖲 . 𝖤𝗏𝖺𝗅( f )

Share size is N

What Functions can be Shared?

f
Sharing an arbitrary function:



What Functions can be Shared?

succinctly



What Functions can be Shared?

succinctly
Sharing the all zero function:


 ∀x, f(x) = 0



0

⋮

0
0
0

0

What Functions can be Shared?

succinctly
Sharing the all zero function:


 ∀x, f(x) = 0



0

⋮

0
0
0

0

⊕ = 0

=⟺

What Functions can be Shared?

succinctly
Sharing the all zero function:


 ∀x, f(x) = 0



Sharing the all zero function:

 ∀x, f(x) = 0

What Functions can be Shared?

succinctly

Identical long random strings



𝗌𝖾𝖾𝖽𝗌𝖾𝖾𝖽

Sharing the all zero function:

 ∀x, f(x) = 0

What Functions can be Shared?

succinctly

We just need a PRG!
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero functioni

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero function

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

i

⋮ ⋮

⋮
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero function

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

i

⋮ ⋮

⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

⋮ ⋮All zero function

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly
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⋮ ⋮
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𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =
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α1
)

Public
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fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =

⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽α1
) ⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽′￼

α1
)

Public

bi

bα1

b N

bi

1 − bα1

b N

𝖤𝗏𝖺𝗅 :

𝖯𝖱𝖦(𝗌𝖾𝖾𝖽j) ⊕ Δ ⋅ bj



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮
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⋮ ⋮

Recursing:

bi

bα1

b N

bi

1 − bα1

b N

Giving  and sharing the ’s are both 
essentially sharing a -size point 

function again: we can recurse the process!

Δ bi
N



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Recursing:

bi

bα1

b N

bi

1 − bα1

b N

Giving  and sharing the ’s are both 
essentially sharing a -size point 

function again: we can recurse the process!

Δ bi
N

This + later improvements [BGI16]:

FSS for point functions with keys of size 

O(λ ⋅ log N)



We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template
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Function secret sharing

{Public function

{

Short seed

Back to the PCG Template

Linear combinations of

Secret sharing 
is additively 
homomorphic!



We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template

Linear combinations of

Secret sharing 
is additively 
homomorphic!

Are there any PRGs in this class?
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Parity-check 
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⋅ ⋅ +,

Random matrix Sparse noiseShort secret

≈ $G G
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Random matrix
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Random matrix

,

LPN yields a simple PRG in the class:

, where  is the unit vector with a 1 at 𝖯𝖱𝖦 : (αi)i≤t ↦ H ⋅
t

∑
i=1

⃗u αi
⃗u αi

αi

{

Linear combination

{
(Truth table of) point functions
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Digression: LPN versus LWE

Noise

≈ $H ⋅H

Random matrix

,
LPN and LWE

LPN( ):   𝔽2 H ←$ 𝔽m×n
2 , LWE( ):   𝔽p H ←$ 𝔽m×n

p ,

‘Sparse’ ‘Small’

𝖡𝖾𝗋(𝔽2)n [−B, B]n

 entropy in the noise  LHL, 
statistical security, lattice trapdoors, 
lossiness…

O(n) ⟹

Statistical security

 entropy in the noise  
compressibility! Crucially used in recent 
results: PCGs, but also iO and batch OT.

t ⋅ log n ≪ n ⟹

Compressibility



Some of my Favourite Open Questions

Some of 

my 

favourite 

open 

question

The  

barrier
𝔽2

Th
e 

co
m

m
un

ic
at

io
n 

of
 M

PC
 w

ith
 

co
rre

la
te

d 
ra

nd
om

ne
ss

Public key 
PCFs: MPC as 
easy as key exchange

Th
e q

ue
st 

fo
r t

he
 

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable 
PCGs for OLE stuck at ?𝔽3

Can we go below 
?s/log log s

Can we get fast, usable, 
scalable MPC over the 

internet?

Can we build 3-party 
PCGs?

How fast can PCGs be?



Some of my Favourite Open Questions

Some of 

my 

favourite 

open 

question

The  

barrier
𝔽2

Th
e 

co
m

m
un

ic
at

io
n 

of
 M

PC
 w

ith
 

co
rre

la
te

d 
ra

nd
om

ne
ss

Public key 
PCFs: MPC as 
easy as key exchange

Th
e q

ue
st 

fo
r t

he
 

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable 
PCGs for OLE stuck at ?𝔽3

Can we go below 
?s/log log s

Can we get fast, usable, 
scalable MPC over the 

internet?

Can we build 3-party 
PCGs?

How fast can PCGs be?



Some of my Favourite Open Questions

Some of 

my 

favourite 

open 

question

The  

barrier
𝔽2

Th
e 

co
m

m
un

ic
at

io
n 

of
 M

PC
 w

ith
 

co
rre

la
te

d 
ra

nd
om

ne
ss

Public key 
PCFs: MPC as 
easy as key exchange

Th
e q

ue
st 

fo
r t

he
 

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable 
PCGs for OLE stuck at ?𝔽3

Can we go below 
?s/log log s

Can we get fast, usable, 
scalable MPC over the 

internet?

Can we build 3-party 
PCGs?

How fast can PCGs be?



Making the PRG more Efficient



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and 
summing unit vectors

Multiplying by a random 
matrix of size Ω(n2)



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and 
summing unit vectors

Multiplying by a random 
matrix of size Ω(n2)

 is the total amount of correlated randomness we want to generate! (Think:  )n n ∼ 230



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and 
summing unit vectors

Multiplying by a random 
matrix of size Ω(n2)

 is the total amount of correlated randomness we want to generate! (Think:  )n n ∼ 230

Can we replace  with a matrix that 
allows for fast matrix-vector product?

H

We need a rule of thumb to know which matrices will yield plausible variants of LPN



A tremendous number of attacks on LPN have been published… Crucial observation: most attacks fit in the 
same framework, the linear test framework. (*)

Linear Test 
Framework

1. Send  to H

2.      returns a test vector 
computed from  in 

unbounded time
⃗v H

⋅
The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse 
noise) is non-negligibly biased.

H

Game

Check

H

⃗v

•  Gaussian Elimination attacks

•  Standard gaussian elimination

•  Blum-Kalai-Wasserman [J.ACM:BKW03]

•  Sample-efficient BKW [A-R:Lyu05]

•  Pooled Gauss [CRYPTO:EKM17]

•  Well-pooled Gauss [CRYPTO:EKM17]

•  Leviel-Fouque [SCN:LF06]

•  Covering codes [JC:GJL19]

•  Covering codes+ [BTV15]

•  Covering codes++ [BV:AC16]

•  Covering codes+++ [EC:ZJW16]

•  Information Set Decoding Attacks

•  Prange’s algorithm [Prange62]

•  Stern’s variant [ICIT:Stern88]

•  Finiasz and Sendrier’s variant [AC:FS09]

•  BJMM variant [EC:BJMM12]

•  May-Ozerov variant [EC:MO15]

•  Both-May variant [PQC:BM18]

•  MMT variant [AC:MMT11]

•  Well-pooled MMT [CRYPTO:EKM17]

•  BLP variant [CRYPTO:BLP11]

•  Other Attacks

•  Generalized birthday [CRYPTO:Wag02]

•  Improved GBA [Kirchner11]

•  Linearization [EC:BM97]

•  Linearization 2 [INDO:Saa07]

•  Low-weight parity-check [Zichron17]

• Low-deg approx [ITCS:ABGKR17]

•  Statistical Decoding Attacks

•  Jabri’s attack [ICCC:Jab01]

•  Overbeck’s variant [ACISP:Ove06]

•  FKI’s variant [Trans.IT:FKI06]

• Debris-Tillich variant [ISIT:DT17]

Security of (variants of) LPN - Linear Tests
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•  Information Set Decoding Attacks

•  Prange’s algorithm [Prange62]

•  Stern’s variant [ICIT:Stern88]

•  Finiasz and Sendrier’s variant [AC:FS09]

•  BJMM variant [EC:BJMM12]

•  May-Ozerov variant [EC:MO15]

•  Both-May variant [PQC:BM18]

•  MMT variant [AC:MMT11]

•  Well-pooled MMT [CRYPTO:EKM17]

•  BLP variant [CRYPTO:BLP11]

•  Other Attacks

•  Generalized birthday [CRYPTO:Wag02]

•  Improved GBA [Kirchner11]

•  Linearization [EC:BM97]

•  Linearization 2 [INDO:Saa07]

•  Low-weight parity-check [Zichron17]

• Low-deg approx [ITCS:ABGKR17]

•  Statistical Decoding Attacks

•  Jabri’s attack [ICCC:Jab01]

•  Overbeck’s variant [ACISP:Ove06]

•  FKI’s variant [Trans.IT:FKI06]

• Debris-Tillich variant [ISIT:DT17]

(*): highly structured algebraic codes 
(e.g. Reed-Solomon) are a different beast

Security of (variants of) LPN - Linear Tests



⋅ +G

The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse 
noise) is non-negligibly biased.

⃗v

Protects against heavy linear testsProtects against light linear tests

We have a sum of two distributions:

⋅⃗v

Induced by the noise vector

⋅G
⋅⃗v

Induced by the codeword

Claim: Assume  (number of noisy coordinates) is set to a security parameter. If there is a constant  such that 
every subset of  rows of  is linearly independent, no linear test can distinguish  from random.

t c
c ⋅ n G G ⋅ ⃗s + ⃗e

Withstanding Linear Tests
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The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse 
noise) is non-negligibly biased.

⃗v

Protects against heavy linear testsProtects against light linear tests

We have a sum of two distributions:

⋅⃗v

Induced by the noise vector

⋅G
⋅⃗v

Induced by the codeword

Claim: Assume  (number of noisy coordinates) is set to a security parameter. If there is a constant  such that 
every subset of  rows of  is linearly independent, no linear test can distinguish  from random.

t c
c ⋅ n G G ⋅ ⃗s + ⃗e

Withstanding Linear Tests

Rephrasing the sufficient condition:

Every subset of  rows of  is linearly independent

 the left-kernel of  does not contain nonzero vector of weight less than 

 the dual code of , i.e., the code generated by the transpose of its parity check matrix , has linear 

minimum distance

O(n) G
⟺ G O(n)
⟺ G H



Pseudorandom Correlation Generators - Efficiency

H ⋅Goal: computing fast, such that the code
G

is LPN-friendy

We want to find a matrix  such that (1) the code generated by  is 
a good code, and (2) computing  takes time  for any 

M = H⊺ M
M⊺ ⋅ ⃗v O(n) ⃗v

 (this is the transposition principle)M ⋅ ⃗v

 We need to find a good and linear-time encodable 
code. And we want it concretely efficient!
⟹



Pseudorandom Correlation Generators - Efficiency

There is an ongoing and exciting quest for pinpointing the right code for PCG applications:


• CCS:Boyle-C-Gilboa-Ishai’18  suggested using LDPC code

• CCS:Boyle-C-Gilboa-Ishai-Kohl-Rindal-Scholl’19 moved to quasi-cyclic codes 

due to concern regarding linear-time encoding of LDPC codes

• Crypto:C-Raghuraman-Rindal’21: tailored LDPC with heuristic & experimental support

• Crypto:Boyle-C-Gilboa-Ishai-Kohl-Resch—Scholl’22: Expand-Accumulate codes

• Latest news: there’s apparently a new proposal that suggests Expand-Convolute 

codes instead (and which breaks Silver along the way!)

• There are a few more codes I’d like to investigate, the quest continues!
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OLE Correlations

OLE over  is the type of correlation we want to do (semi-honest) 
secure computation of arithmetic circuits over .


In an OLE, Alice gets , Bob gets , and Alice and Bob get 
random shares of .

𝔽
𝔽

a ← 𝔽 b ← 𝔽
a ⋅ b



OLE Correlations, the LPN Way
Goal: 

- Alice gets a pseudorandom vector 

- Bob gets a pseudorandom vector 

- Alice and Bob get shares of 
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This is a -sparse matrix, i.e. a sum of  point functions! 
 can be generated with comm. 

t2 t2

⟹ O(λt2 log n)
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Goal: 

- Alice gets a pseudorandom vector 

- Bob gets a pseudorandom vector 

- Alice and Bob get shares of 

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y⋅ =
H

H⊺⃗e x ⋅ ⃗e ⊺
y

⋅ ⋅

This is a -sparse matrix, i.e. a sum of  point functions! 
 can be generated with comm. 

t2 t2

⟹ O(λt2 log n)

Uses only LPN Costs !  (Think: … )ω(n2) n ∼ 230

OLE Correlations, the LPN Way



Let  be the ring  where  is a degree-  polynomial that splits entirely, and .


Ring-LPN assumption:  where  and  are random -sparse polynomials.


Observation: we can get  OLE correlations from a single ‘ring-OLE’ correlation  over : the OLE 
correlations are obtained by reducing ,  and  modulo each of the linear factors  of .


Construction: 
- Alice gets a pseudorandom polynomial  where  are -sparse polynomials over 

- Bob gets a pseudorandom vector  where  are -sparse polynomials over 


- Alice and Bob get shares of 


The polynomials  are public, and  are all -sparse polynomials

ℛ ℤp/F(X) F(X) n p > n

(a, b) ∼ (a, a ⋅ e + f ) (a, b) ← ℛ (e, f ) t

n (x, y, ⟨x ⋅ y⟩) ℛ
x y, x ⋅ y Fi F

x = a ⋅ ex + fx (ex, fx) t ℛ
y = a ⋅ ey + fy (ey, fy) t ℛ

x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20
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x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

Costs only O(n ⋅ log n)
• ‘Splittable ring-LPN’ deserves further study
•  must be large!𝔽

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20



OLE Correlations, from Quasi-Abelian Syndrome Decoding
How do we break this ‘field-size barrier’? An answer in our recent Crypto paper 
(Bombar-C-Couvreur-Ducros’23): we move to quasi-abelian codes, which are defined 
over group algebras.


High level intuition 

The group algebra structure gives a suitable framework to find the right polynomial  
to instantiate an LPN variant over a ring  such that


•  (i.e. we get many copies of an OLE over  )

• The underlying assumption is plausibly secure (i.e. resists linear attacks)


Using multivariate rings gives us many more roots of  even for a small ! In fact, we 
can get up to  copies of an OLE over .

P
ℛ = 𝔽[X1, ⋯, Xd]/P(X1, ⋯, Xd)

ℛ ∼ 𝔽 × ⋯ × 𝔽 𝔽

P 𝔽
( |𝔽 | − 1)d 𝔽



OLE Correlations, from Quasi-Abelian Syndrome Decoding
How do we break this ‘field-size barrier’? An answer in our recent Crypto paper 
(Bombar-C-Couvreur-Ducros’23): we move to quasi-abelian codes, which are defined 
over group algebras.


High level intuition 

The group algebra structure gives a suitable framework to find the right polynomial  
to instantiate an LPN variant over a ring  such that


•  (i.e. we get many copies of an OLE over  )

• The underlying assumption is plausibly secure (i.e. resists linear attacks)


Using multivariate rings gives us many more roots of  even for a small ! In fact, we 
can get up to  copies of an OLE over .

P
ℛ = 𝔽[X1, ⋯, Xd]/P(X1, ⋯, Xd)

ℛ ∼ 𝔽 × ⋯ × 𝔽 𝔽

P 𝔽
( |𝔽 | − 1)d 𝔽{

This only gives something meaningful up to !𝔽3
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A Closer Look at Secure Communication

> 85% of the total internet traffic is encrypted

 Let us look at secure communication’s recipe for success!⟹

Secure communication is already widely deployed and in use

Our ultimate goal is practical MPC that can be deployed and used over the web



A Closer Look at Secure Communication
Two Phases:

Key exchange phase

• One-time, simultaneous interaction

• Heavy (public key) computations

• Low communication  (not )n ⋅ | | n2

⋯

• Lightweight (symmetric) computations

• Optimal message-to-cipher ratio

Encryption phase

Heavy, but 
done only 

once

52



A Closer Look at Secure Communication
Two Phases:

Key exchange phase

• One-time, simultaneous interaction

• Heavy (public key) computations

• Low communication  (not )n ⋅ | | n2

⋯

• Lightweight (symmetric) computations

• Optimal message-to-cipher ratio

Encryption phase

Lightweight

53



Using a PRG enables a one-time generation 
of a fixed amount of correlations

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again



A pseudorandom correlation function is to a 
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again
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𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

Are there any FSS-friendly PRFs?



A pseudorandom correlation function is to a 
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

Are there any FSS-friendly PRFs?

FOCS:BCGIKS20 and Crypto:BCGIKRS22 give plausible candidates

The existence of PRFs in 
low complexity classes 
yields strong limitations 

for learning theory



Pseudorandom Correlation Functions

KA KB

FKA
( ⋅ ) FKB

( ⋅ )

• Black-box access to samples of the form 
 are indistinguishable from black-box 

access to random samples from a target correlation.

• From the viewpoint of Alice, each  is 

indistinguishable from a random value sampled 
conditioned on satisfying the correlation with . 

• Same condition in the other direction.

(FKA
(x), FKB

(x))

FKB
(x)

FKA
(x)

Correctness & security:



Public-Key Pseudorandom Correlation Functions

KA KB

FKA
( ⋅ ) FKB

( ⋅ )

• Black-box access to samples of the form 
 are indistinguishable from black-box 

access to random samples from a target correlation.

• From the viewpoint of Alice, each  is 

indistinguishable from a random value sampled 
conditioned on satisfying the correlation with . 

• Same condition in the other direction.

(FKA
(x), FKB

(x))

FKB
(x)

FKA
(x)

Correctness & security:

Achieving non-interactive silent key generation

Formally: 
•  generates public and private 

PCF keys

•  yields Bob’s PCF key 

w.r.t. Alice’s key

•  yields a pseudorandom sample

𝖪𝖾𝗒𝖦𝖾𝗇 → (𝗉𝗄, 𝗌𝗄)

𝖪𝖾𝗒𝖣𝖾𝗋(𝗉𝗄A, 𝗌𝗄B) → KAB
B

𝖤𝗏𝖺𝗅(K, x) → y



Public-Key Pseudorandom Correlation Functions

Public-key PCFs are exactly the right tool to enable scalable, on-demand 2-party 
secure computation over the Internet, with a communication and computation pattern 
close to that of secure communication over the web.


Building efficient public-key PCF is essentially a wide-open question: the recent work 
of EC:Orlandi-Scholl-Yakoubov’21 gets it for OT from QR, but efficiency is quite bad.


(Teaser) Coming soon: we have some exciting progress in this line of work, which 
does not fully solve the problem, but is a big step forward!
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Some of my Favourite Open Questions

Can we go below 
?s/log log s

No time left for that, but I’d be happy to discuss it over dinner 
tonight!

Other cool things to check out that I don’t have time to discuss:


• People have been doing great things in zero-knowledge 
using these PCG techniques (incl. right here in Aarhus!)


• Everything we have so far works only for two parties!

• … And many more



Questions?


