
Achieving faster secure computation through
pseudorandom correlation generators

1

Geoffroy Couteau

Correlated Pseudorandomness

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published ‘Breaking the Circuit Size Barrier
for Secure Computation under DDH’ at CRYPTO’16

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published ‘Breaking the Circuit Size Barrier
for Secure Computation under DDH’ at CRYPTO’16
I was at the time a young 2nd-year PhD student

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published ‘Breaking the Circuit Size Barrier
for Secure Computation under DDH’ at CRYPTO’16
I was at the time a young 2nd-year PhD student

I got the feeling that this had to be useful to
generate correlated randomness…

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published ‘Breaking the Circuit Size Barrier
for Secure Computation under DDH’ at CRYPTO’16
I was at the time a young 2nd-year PhD student

A few months and a CCS’17 paper later, we
concluded that the answer was ‘not so much’

I got the feeling that this had to be useful to
generate correlated randomness…

7 years later

The Journey through Correlated Pseudorandomess

LPN is not LWE’s
poor little brother

The Journey through Correlated Pseudorandomess

LPN is not LWE’s
poor little brother

Deep connections
to learning theory

The Journey through Correlated Pseudorandomess

LPN is not LWE’s
poor little brother

Deep connections
to learning theory

Strong links with
algebraic coding

theory

The Journey through Correlated Pseudorandomess

LPN is not LWE’s
poor little brother

Deep connections
to learning theory

Strong links with
algebraic coding

theory

Large-scale MPC on the
internet is a possibility!

The Journey through Correlated Pseudorandomess

LPN is not LWE’s
poor little brother

Deep connections
to learning theory

Strong links with
algebraic coding

theory

Large-scale MPC on the
internet is a possibility!

Fast MPC 
+ fun research

The Journey through Correlated Pseudorandomess

Idealized,
information
-theoretic

object

Concrete

crypto

 primitiveCryptographic
compiler

A Standard Cryptographic Approach

Idealized,
information
-theoretic

object

Concrete

crypto

 primitiveCryptographic
compiler

IOP,
LPCP

SNARGs

A Standard Cryptographic Approach

Idealized,
information
-theoretic

object

Concrete

crypto

 primitiveCryptographic
compiler

HBM

NIZKs

IOP,
LPCP

SNARGs

A Standard Cryptographic Approach

Idealized,
information
-theoretic

object

Concrete

crypto

 primitiveCryptographic
compiler

OTP

Encryption

HBM

NIZKs

IOP,
LPCP

SNARGs

A Standard Cryptographic Approach

Idealized,
information
-theoretic

object

Concrete

crypto

 primitiveCryptographic
compiler

OTP

Encryption

HBM

NIZKs

IOP,
LPCP

SNARGs

Correlated
randomness

model

M
PC

⋯

A Standard Cryptographic Approach

Idealized,
information
-theoretic

object

Concrete

crypto

 primitiveCryptographic
compiler

OTP

Encryption

HBM

NIZKs

IOP,
LPCP

SNARGs

Correlated
randomness

model

M
PC

⋯

A Standard Cryptographic Approach

Secure Computation…

• Goal. Computing a public function on secret inputs

• Model. players, each with a private input interacting through authenticated channelsn xi

x y

f : (x, y) ↦ (zA, zB)

• Output: Alice learns and Bob learn

• Security: Alice and Bob learn nothing else

zA zB

Get a recommendation
on a streaming platform

Search over our
Cloud storage

Use a dating app

See a targeted
advertising

Use a social network

…
7

… Is a Practical Concern.

Use a
healthcare

app

The Correlated Randomness Model

MPC protocol

The Correlated Randomness Model

(r1, r2, r3, r4) ← 𝒟

MPC protocol

The Correlated Randomness Model

(r1, r2, r3, r4) ← 𝒟

MPC protocol

r ← 𝒟

MPC protocol

(r1, r2, r3, r4) ← 𝗌𝗁𝖺𝗋𝖾𝗌(r){Additive correlations

The Correlated Randomness Model

(ai, bi)i≤n ← (𝔽2 × 𝔽2)n

GMW protocol

𝗌𝗁𝖺𝗋𝖾𝗌((ai, bi, ai ⋅ bi)i≤n){Example: Beaver triples

 bits / gate
for parties

2N ∧
N

The Correlated Randomness Model

(ai, bi)i≤n ← (𝔽2 × 𝔽2)n

GMW protocol

𝗌𝗁𝖺𝗋𝖾𝗌((ai, bi, ai ⋅ bi)i≤n){Example: Beaver triples

 bits / gate
for parties

2N ∧
N

The Correlated Randomness Model

Very practical*

A Template to Instantiate Efficiently the
Correlated Randomness Model

Given a correlation , the dealer distributes shares of C C(r)

Distributing succinctly⟨C(r)⟩

A Template to Instantiate Efficiently the
Correlated Randomness Model

Given a correlation , the dealer distributes shares of C C(r)

Distributing succinctly⟨C(r)⟩

Pseudorandom correlation generator
 such that

(1) looks like samples from the target
correlation, and

(2) looks ‘random conditioned on satisfying the correlation with
’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B)
(𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A), 𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)) n

𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)
𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)

Preprocessing phase Online phase

Pseudorandom correlation generator: such that (1)
looks like samples from the target correlation, and (2) looks ‘random conditioned on satisfying the
correlation with ’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B) (𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A), 𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B))
n 𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)

𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)

A Template to Instantiate Efficiently the Correlated
Randomness Model: MPC with silent preprocessing

Preprocessing phase Online phase

One-time short interaction

𝗌𝖾𝖾𝖽A 𝗌𝖾𝖾𝖽B

Interactive protocol with short
communication and computation;
Alice and Bob store a small seed
afterwards.

𝖦𝖾𝗇(1λ)

Pseudorandom correlation generator: such that (1)
looks like samples from the target correlation, and (2) looks ‘random conditioned on satisfying the
correlation with ’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B) (𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A), 𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B))
n 𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)

𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)

A Template to Instantiate Efficiently the Correlated
Randomness Model: MPC with silent preprocessing

Preprocessing phase Online phase

‘Silent’ computation

The bulk of the preprocessing
phase is offline: Alice and Bob
stretch their seeds into large
pseudorandom correlated strings.

𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽A) 𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽B)

One-time short interaction

𝗌𝖾𝖾𝖽A 𝗌𝖾𝖾𝖽B

Interactive protocol with short
communication and computation;
Alice and Bob store a small seed
afterwards.

𝖦𝖾𝗇(1λ)

Pseudorandom correlation generator: such that (1)
looks like samples from the target correlation, and (2) looks ‘random conditioned on satisfying the
correlation with ’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B) (𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A), 𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B))
n 𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)

𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)

A Template to Instantiate Efficiently the Correlated
Randomness Model: MPC with silent preprocessing

Preprocessing phase Online phase

‘Silent’ computation

The bulk of the preprocessing
phase is offline: Alice and Bob
stretch their seeds into large
pseudorandom correlated strings.

𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽A) 𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽B)

One-time short interaction

𝗌𝖾𝖾𝖽A 𝗌𝖾𝖾𝖽B

Interactive protocol with short
communication and computation;
Alice and Bob store a small seed
afterwards.

𝖦𝖾𝗇(1λ)

Non-cryptographic

Alice and Bob consume the
preprocessing material in a fast,
non-cryptographic online phase.

x y

f(x, y)

Pseudorandom correlation generator: such that (1)
looks like samples from the target correlation, and (2) looks ‘random conditioned on satisfying the
correlation with ’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B) (𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A), 𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B))
n 𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)

𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)

A Template to Instantiate Efficiently the Correlated
Randomness Model: MPC with silent preprocessing

Q: What Correlations do we Consider?C

Q: What Correlations do we Consider?C

R: It depends! What MPC Protocol do you Want?

One does not simply build
some MPC protocol

Q: What Correlations do we Consider?C

Semi-honestMalicious

BooleanArithmetic

SpecializedUniversal

ID preprocII preproc

2 parties partiesN

SelectiveAdaptive

R: It depends! What MPC Protocol do you Want?

One does not simply build
some MPC protocol

Q: What Correlations do we Consider?C

Semi-honestMalicious

BooleanArithmetic

SpecializedUniversal

ID preprocII preproc

2 parties partiesN

SelectiveAdaptive

R: It depends! What MPC Protocol do you Want?

One does not simply build
some MPC protocol

Depending on the application, you’ll want:

VOLE, OT, OLE, bilinear correlations, Beaver
triples, authenticated Beaver triples, daBits,
circuit-dependent correlations, polynomial
correlations, matrix triples, OTTT…

A Template to Instantiate Efficiently the
Correlated Randomness Model

Given a correlation , the dealer distributes shares of C C(r)

Distributing succinctly⟨C(r)⟩

A Template to Instantiate Efficiently the
Correlated Randomness Model

Given a correlation , the dealer distributes shares of C C(r)

Distributing succinctly⟨C(r)⟩

⟨C(r)⟩
Random coin

Correlation (function)

Shares
𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){

Function secret sharing

{Public function

{

Short seed

A Template to Instantiate Efficiently the
Correlated Randomness Model

Given a correlation , the dealer distributes shares of C C(r)

Distributing succinctly⟨C(r)⟩

⟨C(r)⟩
Random coin

Correlation (function)

Shares
𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){

Function secret sharing

{Public function

{

Short seed

Function Secret Sharing
(𝖲𝗁𝖺𝗋𝖾(f) ↦)

𝖤𝗏𝖺𝗅(+ , x) 𝖤𝗏𝖺𝗅(= , x) f(x){FSS

Function Secret Sharing

Mid endLow end High end

All polytime functions

iO, Multi-key threshold FHE

𝖭𝖢1

DDH, DCR, class groups

Point functions

OWF IT

Lin. comb.

(𝖲𝗁𝖺𝗋𝖾(f) ↦)

𝖤𝗏𝖺𝗅(+ , x) 𝖤𝗏𝖺𝗅(= , x) f(x){FSS

Function Secret Sharing

Mid endLow end High end

All polytime functions

iO, Multi-key threshold FHE

𝖭𝖢1

DDH, DCR, class groups

Point functions

OWF IT

Lin. comb.

(𝖲𝗁𝖺𝗋𝖾(f) ↦)

𝖤𝗏𝖺𝗅(+ , x) 𝖤𝗏𝖺𝗅(= , x) f(x){FSS

What Functions can be Shared?

f
Sharing an arbitrary function:

What Functions can be Shared?

f(0)
f(1)
f(2)

f(N)

f(3)
⋮

f
Sharing an arbitrary function:

What Functions can be Shared?

f(0)
f(1)
f(2)

f(N)

f(3)
⋮

f
Sharing an arbitrary function:

What Functions can be Shared?

f(0)
f(1)
f(2)

f(N)

f(3)
⋮

𝖥𝖲𝖲 . 𝖲𝗁𝖺𝗋𝖾(f)

f
Sharing an arbitrary function:

x x

x x
f(x)

What Functions can be Shared?

f
Sharing an arbitrary function:

x x

x x
f(x)

𝖥𝖲𝖲 . 𝖤𝗏𝖺𝗅(f)

What Functions can be Shared?

f
Sharing an arbitrary function:

x x

x x
f(x)

𝖥𝖲𝖲 . 𝖤𝗏𝖺𝗅(f)

Share size is N

What Functions can be Shared?

f
Sharing an arbitrary function:

What Functions can be Shared?

succinctly

What Functions can be Shared?

succinctly
Sharing the all zero function:

 ∀x, f(x) = 0

0

⋮

0
0
0

0

What Functions can be Shared?

succinctly
Sharing the all zero function:

 ∀x, f(x) = 0

0

⋮

0
0
0

0

⊕ = 0

=⟺

What Functions can be Shared?

succinctly
Sharing the all zero function:

 ∀x, f(x) = 0

Sharing the all zero function:

 ∀x, f(x) = 0

What Functions can be Shared?

succinctly

Identical long random strings

𝗌𝖾𝖾𝖽𝗌𝖾𝖾𝖽

Sharing the all zero function:

 ∀x, f(x) = 0

What Functions can be Shared?

succinctly

We just need a PRG!

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero functioni

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero functioni

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero function

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

i

⋮ ⋮

⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

⋮ ⋮

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero function

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

i

⋮ ⋮

⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

⋮ ⋮All zero function

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =

⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽α1
) ⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽′￼

α1
)

Public

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =

⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽α1
) ⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽′￼

α1
)

Public

bi

bα1

b N

bi

1 − bα1

b N

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =

⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽α1
) ⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽′￼

α1
)

Public

bi

bα1

b N

bi

1 − bα1

b N

𝖤𝗏𝖺𝗅 :

𝖯𝖱𝖦(𝗌𝖾𝖾𝖽j) ⊕ Δ ⋅ bj

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Recursing:

bi

bα1

b N

bi

1 − bα1

b N

Giving and sharing the ’s are both
essentially sharing a -size point

function again: we can recurse the process!

Δ bi
N

Sharing a point function
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′￼

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Recursing:

bi

bα1

b N

bi

1 − bα1

b N

Giving and sharing the ’s are both
essentially sharing a -size point

function again: we can recurse the process!

Δ bi
N

This + later improvements [BGI16]:

FSS for point functions with keys of size

O(λ ⋅ log N)

We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template

We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template

Linear combinations of

Secret sharing
is additively
homomorphic!

We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template

Linear combinations of

Secret sharing
is additively
homomorphic!

Are there any PRGs in this class?

The LPN assumption - primal

LPN to the Rescue

The LPN assumption - primal

⋅ +,

Random matrix Sparse noiseShort secret

≈ $G G

LPN to the Rescue

The LPN assumption - primal

H

Parity-check
matrix of G

⋅ ⋅ +,

Random matrix Sparse noiseShort secret

≈ $G G

LPN to the Rescue

The LPN assumption - primal

H

Parity-check
matrix of G

⋅ ⋅ +,

Random matrix Sparse noiseShort secret

≈ $G G

LPN to the Rescue

LPN to the Rescue
The LPN assumption - dual

H ⋅

Sparse noise

≈ $H

Random matrix

,

LPN to the Rescue
The LPN assumption - dual

H ⋅

Sparse noise

≈ $H

Random matrix

,

LPN yields a simple PRG in the class:

LPN to the Rescue
The LPN assumption - dual

H ⋅

Sparse noise

≈ $H

Random matrix

,

LPN yields a simple PRG in the class:

, where is the unit vector with a 1 at 𝖯𝖱𝖦 : (αi)i≤t ↦ H ⋅
t

∑
i=1

⃗u αi
⃗u αi

αi

LPN to the Rescue
The LPN assumption - dual

H ⋅

Sparse noise

≈ $H

Random matrix

,

LPN yields a simple PRG in the class:

, where is the unit vector with a 1 at 𝖯𝖱𝖦 : (αi)i≤t ↦ H ⋅
t

∑
i=1

⃗u αi
⃗u αi

αi

{

Linear combination

LPN to the Rescue
The LPN assumption - dual

H ⋅

Sparse noise

≈ $H

Random matrix

,

LPN yields a simple PRG in the class:

, where is the unit vector with a 1 at 𝖯𝖱𝖦 : (αi)i≤t ↦ H ⋅
t

∑
i=1

⃗u αi
⃗u αi

αi

{

Linear combination

{
(Truth table of) point functions

We have FSS for a class that contains a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

We have FSS for a class that contains a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

The heavy lifting in the many subsequent works boils down to:

• Making the PRG more efficient

• Adding support for more complex C

We have FSS for a class that contains a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

The heavy lifting in the many subsequent works boils down to:

• Making the PRG more efficient

• Adding support for more complex C

{Both questions are deeply
rooted in (combinatorial and

algebraic) coding theory

We have FSS for a class that contains a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

The heavy lifting in the many subsequent works boils down to:

• Making the PRG more efficient

• Adding support for more complex C

{Both questions are deeply
rooted in (combinatorial and

algebraic) coding theory

LPN and LWE
⋅ +,

Random matrix NoiseShort secret

≈ $G G

LPN(): 𝔽2 G ←$ 𝔽m×n
2 , ←$ 𝔽n

2, LWE(): 𝔽p G ←$ 𝔽m×n
p , ←$ 𝔽n

p,

Digression: LPN versus LWE

‘Sparse’ ‘Small’

𝖡𝖾𝗋(𝔽2)n [−B, B]n

Digression: LPN versus LWE

Noise

≈ $H ⋅H

Random matrix

,
LPN and LWE

LPN(): 𝔽2 H ←$ 𝔽m×n
2 , LWE(): 𝔽p H ←$ 𝔽m×n

p ,

‘Sparse’ ‘Small’

𝖡𝖾𝗋(𝔽2)n [−B, B]n

Digression: LPN versus LWE

Noise

≈ $H ⋅H

Random matrix

,
LPN and LWE

LPN(): 𝔽2 H ←$ 𝔽m×n
2 , LWE(): 𝔽p H ←$ 𝔽m×n

p ,

‘Sparse’ ‘Small’

𝖡𝖾𝗋(𝔽2)n [−B, B]n

 entropy in the noise LHL,
statistical security, lattice trapdoors,
lossiness…

O(n) ⟹

Statistical security

Digression: LPN versus LWE

Noise

≈ $H ⋅H

Random matrix

,
LPN and LWE

LPN(): 𝔽2 H ←$ 𝔽m×n
2 , LWE(): 𝔽p H ←$ 𝔽m×n

p ,

‘Sparse’ ‘Small’

𝖡𝖾𝗋(𝔽2)n [−B, B]n

 entropy in the noise LHL,
statistical security, lattice trapdoors,
lossiness…

O(n) ⟹

Statistical security

 entropy in the noise
compressibility! Crucially used in recent
results: PCGs, but also iO and batch OT.

t ⋅ log n ≪ n ⟹

Compressibility

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Making the PRG more Efficient

Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and
summing unit vectors

Multiplying by a random
matrix of size Ω(n2)

Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and
summing unit vectors

Multiplying by a random
matrix of size Ω(n2)

 is the total amount of correlated randomness we want to generate! (Think:)n n ∼ 230

Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and
summing unit vectors

Multiplying by a random
matrix of size Ω(n2)

 is the total amount of correlated randomness we want to generate! (Think:)n n ∼ 230

Can we replace with a matrix that
allows for fast matrix-vector product?

H

We need a rule of thumb to know which matrices will yield plausible variants of LPN

A tremendous number of attacks on LPN have been published… Crucial observation: most attacks fit in the
same framework, the linear test framework. (*)

Linear Test
Framework

1. Send to H

2. returns a test vector
computed from in

unbounded time
⃗v H

⋅
The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse
noise) is non-negligibly biased.

H

Game

Check

H

⃗v

• Gaussian Elimination attacks

• Standard gaussian elimination

• Blum-Kalai-Wasserman [J.ACM:BKW03]

• Sample-efficient BKW [A-R:Lyu05]

• Pooled Gauss [CRYPTO:EKM17]

• Well-pooled Gauss [CRYPTO:EKM17]

• Leviel-Fouque [SCN:LF06]

• Covering codes [JC:GJL19]

• Covering codes+ [BTV15]

• Covering codes++ [BV:AC16]

• Covering codes+++ [EC:ZJW16]

• Information Set Decoding Attacks

• Prange’s algorithm [Prange62]

• Stern’s variant [ICIT:Stern88]

• Finiasz and Sendrier’s variant [AC:FS09]

• BJMM variant [EC:BJMM12]

• May-Ozerov variant [EC:MO15]

• Both-May variant [PQC:BM18]

• MMT variant [AC:MMT11]

• Well-pooled MMT [CRYPTO:EKM17]

• BLP variant [CRYPTO:BLP11]

• Other Attacks

• Generalized birthday [CRYPTO:Wag02]

• Improved GBA [Kirchner11]

• Linearization [EC:BM97]

• Linearization 2 [INDO:Saa07]

• Low-weight parity-check [Zichron17]

• Low-deg approx [ITCS:ABGKR17]

• Statistical Decoding Attacks

• Jabri’s attack [ICCC:Jab01]

• Overbeck’s variant [ACISP:Ove06]

• FKI’s variant [Trans.IT:FKI06]

• Debris-Tillich variant [ISIT:DT17]

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published… Crucial observation: most attacks fit in the
same framework, the linear test framework. (*)

Linear Test
Framework

1. Send to H

2. returns a test vector
computed from in

unbounded time
⃗v H

⋅
The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse
noise) is non-negligibly biased.

H

Game

Check

H

⃗v

• Gaussian Elimination attacks

• Standard gaussian elimination

• Blum-Kalai-Wasserman [J.ACM:BKW03]

• Sample-efficient BKW [A-R:Lyu05]

• Pooled Gauss [CRYPTO:EKM17]

• Well-pooled Gauss [CRYPTO:EKM17]

• Leviel-Fouque [SCN:LF06]

• Covering codes [JC:GJL19]

• Covering codes+ [BTV15]

• Covering codes++ [BV:AC16]

• Covering codes+++ [EC:ZJW16]

• Information Set Decoding Attacks

• Prange’s algorithm [Prange62]

• Stern’s variant [ICIT:Stern88]

• Finiasz and Sendrier’s variant [AC:FS09]

• BJMM variant [EC:BJMM12]

• May-Ozerov variant [EC:MO15]

• Both-May variant [PQC:BM18]

• MMT variant [AC:MMT11]

• Well-pooled MMT [CRYPTO:EKM17]

• BLP variant [CRYPTO:BLP11]

• Other Attacks

• Generalized birthday [CRYPTO:Wag02]

• Improved GBA [Kirchner11]

• Linearization [EC:BM97]

• Linearization 2 [INDO:Saa07]

• Low-weight parity-check [Zichron17]

• Low-deg approx [ITCS:ABGKR17]

• Statistical Decoding Attacks

• Jabri’s attack [ICCC:Jab01]

• Overbeck’s variant [ACISP:Ove06]

• FKI’s variant [Trans.IT:FKI06]

• Debris-Tillich variant [ISIT:DT17]

(*): highly structured algebraic codes
(e.g. Reed-Solomon) are a different beast

Security of (variants of) LPN - Linear Tests

⋅ +G

The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse
noise) is non-negligibly biased.

⃗v

Protects against heavy linear testsProtects against light linear tests

We have a sum of two distributions:

⋅⃗v

Induced by the noise vector

⋅G
⋅⃗v

Induced by the codeword

Claim: Assume (number of noisy coordinates) is set to a security parameter. If there is a constant such that
every subset of rows of is linearly independent, no linear test can distinguish from random.

t c
c ⋅ n G G ⋅ ⃗s + ⃗e

Withstanding Linear Tests

⋅ +G

The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse
noise) is non-negligibly biased.

⃗v

Protects against heavy linear testsProtects against light linear tests

We have a sum of two distributions:

⋅⃗v

Induced by the noise vector

⋅G
⋅⃗v

Induced by the codeword

Claim: Assume (number of noisy coordinates) is set to a security parameter. If there is a constant such that
every subset of rows of is linearly independent, no linear test can distinguish from random.

t c
c ⋅ n G G ⋅ ⃗s + ⃗e

Withstanding Linear Tests

Rephrasing the sufficient condition:

Every subset of rows of is linearly independent

 the left-kernel of does not contain nonzero vector of weight less than

 the dual code of , i.e., the code generated by the transpose of its parity check matrix , has linear

minimum distance

O(n) G
⟺ G O(n)
⟺ G H

Pseudorandom Correlation Generators - Efficiency

H ⋅Goal: computing fast, such that the code
G

is LPN-friendy

We want to find a matrix such that (1) the code generated by is
a good code, and (2) computing takes time for any

M = H⊺ M
M⊺ ⋅ ⃗v O(n) ⃗v

 (this is the transposition principle)M ⋅ ⃗v

 We need to find a good and linear-time encodable
code. And we want it concretely efficient!
⟹

Pseudorandom Correlation Generators - Efficiency

There is an ongoing and exciting quest for pinpointing the right code for PCG applications:

• CCS:Boyle-C-Gilboa-Ishai’18 suggested using LDPC code

• CCS:Boyle-C-Gilboa-Ishai-Kohl-Rindal-Scholl’19 moved to quasi-cyclic codes 

due to concern regarding linear-time encoding of LDPC codes

• Crypto:C-Raghuraman-Rindal’21: tailored LDPC with heuristic & experimental support

• Crypto:Boyle-C-Gilboa-Ishai-Kohl-Resch—Scholl’22: Expand-Accumulate codes

• Latest news: there’s apparently a new proposal that suggests Expand-Convolute

codes instead (and which breaks Silver along the way!)

• There are a few more codes I’d like to investigate, the quest continues!

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

OLE Correlations

OLE over is the type of correlation we want to do (semi-honest)
secure computation of arithmetic circuits over .

In an OLE, Alice gets , Bob gets , and Alice and Bob get
random shares of .

𝔽
𝔽

a ← 𝔽 b ← 𝔽
a ⋅ b

OLE Correlations, the LPN Way
Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y

⃗x ⋅ ⃗y ⊺

⋅ =

OLE Correlations, the LPN Way
Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y

⃗x ⋅ ⃗y ⊺

⋅ =

⃗x ⊙ ⃗y

Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y

⃗x ⋅ ⃗y ⊺

⋅ =

⃗x ⊙ ⃗y

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y⋅ =
H

H⊺⃗e x

⃗e ⊺
y⋅⋅ ⋅

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y⋅ =
H

H⊺⃗e x ⋅ ⃗e ⊺
y

⋅ ⋅

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y⋅ =
H

H⊺⃗e x ⋅ ⃗e ⊺
y

⋅ ⋅

This is a -sparse matrix, i.e. a sum of point functions!
 can be generated with comm.

t2 t2

⟹ O(λt2 log n)

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector

- Bob gets a pseudorandom vector

- Alice and Bob get shares of

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y⋅ =
H

H⊺⃗e x ⋅ ⃗e ⊺
y

⋅ ⋅

This is a -sparse matrix, i.e. a sum of point functions!
 can be generated with comm.

t2 t2

⟹ O(λt2 log n)

Uses only LPN Costs ! (Think: …)ω(n2) n ∼ 230

OLE Correlations, the LPN Way

Let be the ring where is a degree- polynomial that splits entirely, and .

Ring-LPN assumption: where and are random -sparse polynomials.

Observation: we can get OLE correlations from a single ‘ring-OLE’ correlation over : the OLE
correlations are obtained by reducing , and modulo each of the linear factors of .

Construction:
- Alice gets a pseudorandom polynomial where are -sparse polynomials over

- Bob gets a pseudorandom vector where are -sparse polynomials over

- Alice and Bob get shares of

The polynomials are public, and are all -sparse polynomials

ℛ ℤp/F(X) F(X) n p > n

(a, b) ∼ (a, a ⋅ e + f) (a, b) ← ℛ (e, f) t

n (x, y, ⟨x ⋅ y⟩) ℛ
x y, x ⋅ y Fi F

x = a ⋅ ex + fx (ex, fx) t ℛ
y = a ⋅ ey + fy (ey, fy) t ℛ

x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20

Let be the ring where is a degree- polynomial that splits entirely, and .

Ring-LPN assumption: where and are random -sparse polynomials.

Observation: we can get OLE correlations from a single ‘ring-OLE’ correlation over : the OLE
correlations are obtained by reducing , and modulo each of the linear factors of .

Construction:
- Alice gets a pseudorandom polynomial where are -sparse polynomials over

- Bob gets a pseudorandom vector where are -sparse polynomials over

- Alice and Bob get shares of

The polynomials are public, and are all -sparse polynomials

ℛ ℤp/F(X) F(X) n p > n

(a, b) ∼ (a, a ⋅ e + f) (a, b) ← ℛ (e, f) t

n (x, y, ⟨x ⋅ y⟩) ℛ
x y, x ⋅ y Fi F

x = a ⋅ ex + fx (ex, fx) t ℛ
y = a ⋅ ey + fy (ey, fy) t ℛ

x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

Costs only O(n ⋅ log n)
• ‘Splittable ring-LPN’ deserves further study

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20

Let be the ring where is a degree- polynomial that splits entirely, and .

Ring-LPN assumption: where and are random -sparse polynomials.

Observation: we can get OLE correlations from a single ‘ring-OLE’ correlation over : the OLE
correlations are obtained by reducing , and modulo each of the linear factors of .

Construction:
- Alice gets a pseudorandom polynomial where are -sparse polynomials over

- Bob gets a pseudorandom vector where are -sparse polynomials over

- Alice and Bob get shares of

The polynomials are public, and are all -sparse polynomials

ℛ ℤp/F(X) F(X) n p > n

(a, b) ∼ (a, a ⋅ e + f) (a, b) ← ℛ (e, f) t

n (x, y, ⟨x ⋅ y⟩) ℛ
x y, x ⋅ y Fi F

x = a ⋅ ex + fx (ex, fx) t ℛ
y = a ⋅ ey + fy (ey, fy) t ℛ

x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

Costs only O(n ⋅ log n)
• ‘Splittable ring-LPN’ deserves further study
• must be large!𝔽

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20

OLE Correlations, from Quasi-Abelian Syndrome Decoding
How do we break this ‘field-size barrier’? An answer in our recent Crypto paper
(Bombar-C-Couvreur-Ducros’23): we move to quasi-abelian codes, which are defined
over group algebras.

High level intuition

The group algebra structure gives a suitable framework to find the right polynomial
to instantiate an LPN variant over a ring such that

• (i.e. we get many copies of an OLE over)

• The underlying assumption is plausibly secure (i.e. resists linear attacks)

Using multivariate rings gives us many more roots of even for a small ! In fact, we
can get up to copies of an OLE over .

P
ℛ = 𝔽[X1, ⋯, Xd]/P(X1, ⋯, Xd)

ℛ ∼ 𝔽 × ⋯ × 𝔽 𝔽

P 𝔽
(|𝔽 | − 1)d 𝔽

OLE Correlations, from Quasi-Abelian Syndrome Decoding
How do we break this ‘field-size barrier’? An answer in our recent Crypto paper
(Bombar-C-Couvreur-Ducros’23): we move to quasi-abelian codes, which are defined
over group algebras.

High level intuition

The group algebra structure gives a suitable framework to find the right polynomial
to instantiate an LPN variant over a ring such that

• (i.e. we get many copies of an OLE over)

• The underlying assumption is plausibly secure (i.e. resists linear attacks)

Using multivariate rings gives us many more roots of even for a small ! In fact, we
can get up to copies of an OLE over .

P
ℛ = 𝔽[X1, ⋯, Xd]/P(X1, ⋯, Xd)

ℛ ∼ 𝔽 × ⋯ × 𝔽 𝔽

P 𝔽
(|𝔽 | − 1)d 𝔽{

This only gives something meaningful up to !𝔽3

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

A Closer Look at Secure Communication

> 85% of the total internet traffic is encrypted

 Let us look at secure communication’s recipe for success!⟹

Secure communication is already widely deployed and in use

Our ultimate goal is practical MPC that can be deployed and used over the web

A Closer Look at Secure Communication
Two Phases:

Key exchange phase

• One-time, simultaneous interaction

• Heavy (public key) computations

• Low communication (not)n ⋅ | | n2

⋯

• Lightweight (symmetric) computations

• Optimal message-to-cipher ratio

Encryption phase

Heavy, but
done only

once

52

A Closer Look at Secure Communication
Two Phases:

Key exchange phase

• One-time, simultaneous interaction

• Heavy (public key) computations

• Low communication (not)n ⋅ | | n2

⋯

• Lightweight (symmetric) computations

• Optimal message-to-cipher ratio

Encryption phase

Lightweight

53

Using a PRG enables a one-time generation
of a fixed amount of correlations

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

A pseudorandom correlation function is to a
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

A pseudorandom correlation function is to a
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

Are there any FSS-friendly PRFs?

A pseudorandom correlation function is to a
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

Are there any FSS-friendly PRFs?

FOCS:BCGIKS20 and Crypto:BCGIKRS22 give plausible candidates

The existence of PRFs in
low complexity classes
yields strong limitations

for learning theory

Pseudorandom Correlation Functions

KA KB

FKA
(⋅) FKB

(⋅)

• Black-box access to samples of the form
 are indistinguishable from black-box

access to random samples from a target correlation.

• From the viewpoint of Alice, each is

indistinguishable from a random value sampled
conditioned on satisfying the correlation with .

• Same condition in the other direction.

(FKA
(x), FKB

(x))

FKB
(x)

FKA
(x)

Correctness & security:

Public-Key Pseudorandom Correlation Functions

KA KB

FKA
(⋅) FKB

(⋅)

• Black-box access to samples of the form
 are indistinguishable from black-box

access to random samples from a target correlation.

• From the viewpoint of Alice, each is

indistinguishable from a random value sampled
conditioned on satisfying the correlation with .

• Same condition in the other direction.

(FKA
(x), FKB

(x))

FKB
(x)

FKA
(x)

Correctness & security:

Achieving non-interactive silent key generation

Formally:
• generates public and private

PCF keys

• yields Bob’s PCF key

w.r.t. Alice’s key

• yields a pseudorandom sample

𝖪𝖾𝗒𝖦𝖾𝗇 → (𝗉𝗄, 𝗌𝗄)

𝖪𝖾𝗒𝖣𝖾𝗋(𝗉𝗄A, 𝗌𝗄B) → KAB
B

𝖤𝗏𝖺𝗅(K, x) → y

Public-Key Pseudorandom Correlation Functions

Public-key PCFs are exactly the right tool to enable scalable, on-demand 2-party
secure computation over the Internet, with a communication and computation pattern
close to that of secure communication over the web.

Building efficient public-key PCF is essentially a wide-open question: the recent work
of EC:Orlandi-Scholl-Yakoubov’21 gets it for OT from QR, but efficiency is quite bad.

(Teaser) Coming soon: we have some exciting progress in this line of work, which
does not fully solve the problem, but is a big step forward!

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Some of my Favourite Open Questions

Some of

my

favourite

open

question

The

barrier
𝔽2

Th
e

co
m

m
un

ic
at

io
n

of
 M

PC
 w

ith

co
rre

la
te

d
ra

nd
om

ne
ss

Public key
PCFs: MPC as
easy as key exchange

Th
e q

ue
st

fo
r t

he

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable
PCGs for OLE stuck at ?𝔽3

Can we go below
?s/log log s

Can we get fast, usable,
scalable MPC over the

internet?

Can we build 3-party
PCGs?

How fast can PCGs be?

Some of my Favourite Open Questions

Can we go below
?s/log log s

No time left for that, but I’d be happy to discuss it over dinner
tonight!

Other cool things to check out that I don’t have time to discuss:

• People have been doing great things in zero-knowledge
using these PCG techniques (incl. right here in Aarhus!)

• Everything we have so far works only for two parties!

• … And many more

Questions?

