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Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published ‘Breaking the Circuit Size Barrier 
for Secure Computation under DDH’ at CRYPTO’16
I was at the time a young 2nd-year PhD student

A few months and a CCS’17 paper later, we 
concluded that the answer was ‘not so much’

I got the feeling that this had to be useful to 
generate correlated randomness…



7 years later



The Journey through Correlated Pseudorandomess



LPN is not LWE’s 
poor little brother

The Journey through Correlated Pseudorandomess



LPN is not LWE’s 
poor little brother

Deep connections 
to learning theory

The Journey through Correlated Pseudorandomess



LPN is not LWE’s 
poor little brother

Deep connections 
to learning theory

Strong links with 
algebraic coding 

theory

The Journey through Correlated Pseudorandomess



LPN is not LWE’s 
poor little brother

Deep connections 
to learning theory

Strong links with 
algebraic coding 

theory

Large-scale MPC on the 
internet is a possibility!

The Journey through Correlated Pseudorandomess



LPN is not LWE’s 
poor little brother

Deep connections 
to learning theory

Strong links with 
algebraic coding 

theory

Large-scale MPC on the 
internet is a possibility!

Fast MPC 
+ fun research

The Journey through Correlated Pseudorandomess
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Secure Computation…

• Goal. Computing a public function on secret inputs

• Model.  players, each with a private input  interacting through authenticated channelsn xi

x y

f : (x, y) ↦ (zA, zB)

• Output: Alice learns  and Bob learn 

• Security: Alice and Bob learn nothing else

zA zB



Get a recommendation 
on a streaming platform

Search over our 
Cloud storage

Use a dating app

See a targeted 
advertising

Use a social network

…
7

… Is a Practical Concern.

Use a 
healthcare 

app
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r ← 𝒟

MPC protocol

(r1, r2, r3, r4) ← 𝗌𝗁𝖺𝗋𝖾𝗌(r){Additive correlations

The Correlated Randomness Model
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(ai, bi)i≤n ← (𝔽2 × 𝔽2)n

GMW protocol

𝗌𝗁𝖺𝗋𝖾𝗌((ai, bi, ai ⋅ bi)i≤n){Example: Beaver triples

 bits /  gate 
for  parties

2N ∧
N

The Correlated Randomness Model

Very practical*
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A Template to Instantiate Efficiently the 
Correlated Randomness Model 

Given a correlation , the dealer distributes shares of C C(r)

Distributing  succinctly⟨C(r)⟩

Pseudorandom correlation generator 
 such that 

(1)  looks like  samples from the target 
correlation, and 

(2)  looks ‘random conditioned on satisfying the correlation with 
’ to Bob (similar property w.r.t. Alice).

𝖦𝖾𝗇(1λ) → (𝗌𝖾𝖾𝖽A, 𝗌𝖾𝖾𝖽B)
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𝖤𝗑𝗉𝖺𝗇𝖽(A, 𝗌𝖾𝖾𝖽A)
𝖤𝗑𝗉𝖺𝗇𝖽(B, 𝗌𝖾𝖾𝖽B)
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Preprocessing phase Online phase

‘Silent’ computation

The bulk of the preprocessing 
phase is offline: Alice and Bob 
stretch their seeds into large 
pseudorandom correlated strings.

𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽A) 𝖤𝗑𝗉𝖺𝗇𝖽(𝗌𝖾𝖾𝖽B)

One-time short interaction

𝗌𝖾𝖾𝖽A 𝗌𝖾𝖾𝖽B

Interactive protocol with short 
communication and computation; 
Alice and Bob store a small seed 
afterwards.

𝖦𝖾𝗇(1λ)

Non-cryptographic

Alice and Bob consume the 
preprocessing material in a fast, 
non-cryptographic online phase.


x y

f(x, y)

Pseudorandom correlation generator:  such that (1)  
looks like  samples from the target correlation, and (2)  looks ‘random conditioned on satisfying the 
correlation with ’ to Bob (similar property w.r.t. Alice).
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Q: What Correlations  do we Consider?C

Semi-honestMalicious

BooleanArithmetic

SpecializedUniversal

ID preprocII preproc

2 parties partiesN

SelectiveAdaptive

R: It depends! What MPC Protocol do you Want?

One does not simply build 
some MPC protocol

Depending on the application, you’ll want:

VOLE, OT, OLE, bilinear correlations, Beaver 
triples, authenticated Beaver triples, daBits, 
circuit-dependent correlations, polynomial 
correlations, matrix triples, OTTT… 
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Given a correlation , the dealer distributes shares of C C(r)

Distributing  succinctly⟨C(r)⟩

⟨C(r)⟩
Random coin

Correlation (function)

Shares
𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){

Function secret sharing

{Public function

{

Short seed



Function Secret Sharing
(𝖲𝗁𝖺𝗋𝖾( f ) ↦ ) 

𝖤𝗏𝖺𝗅(  +  , x) 𝖤𝗏𝖺𝗅(  = , x) f(x){FSS
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What Functions can be Shared?

f(0)
f(1)
f(2)

f(N)

f(3)
⋮

𝖥𝖲𝖲 . 𝖲𝗁𝖺𝗋𝖾( f )

f
Sharing an arbitrary function:



x x

x x
f(x)

What Functions can be Shared?

f
Sharing an arbitrary function:



x x

x x
f(x)

𝖥𝖲𝖲 . 𝖤𝗏𝖺𝗅( f )

What Functions can be Shared?

f
Sharing an arbitrary function:



x x

x x
f(x)

𝖥𝖲𝖲 . 𝖤𝗏𝖺𝗅( f )

Share size is N

What Functions can be Shared?

f
Sharing an arbitrary function:
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What Functions can be Shared?

succinctly
Sharing the all zero function:


 ∀x, f(x) = 0



0

⋮

0
0
0

0

What Functions can be Shared?

succinctly
Sharing the all zero function:


 ∀x, f(x) = 0



0

⋮

0
0
0

0

⊕ = 0

=⟺

What Functions can be Shared?

succinctly
Sharing the all zero function:


 ∀x, f(x) = 0



Sharing the all zero function:

 ∀x, f(x) = 0

What Functions can be Shared?

succinctly

Identical long random strings



𝗌𝖾𝖾𝖽𝗌𝖾𝖾𝖽

Sharing the all zero function:

 ∀x, f(x) = 0

What Functions can be Shared?

succinctly

We just need a PRG!
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero functioni
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero function

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

i

⋮ ⋮

⋮
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β

α0

α1 N

N

All zero function

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

i

⋮ ⋮

⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′ 

α1

⋮ ⋮All zero function

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly
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⋮ ⋮
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𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =
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) ⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽′ 

α1
)

Public



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i
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Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

β𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′ 

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Δ =

⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽α1
) ⊕ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽′ 

α1
)

Public

bi

bα1

b N

bi

1 − bα1

b N

𝖤𝗏𝖺𝗅 :

𝖯𝖱𝖦(𝗌𝖾𝖾𝖽j) ⊕ Δ ⋅ bj



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮
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α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Recursing:

bi

bα1

b N

bi

1 − bα1

b N

Giving  and sharing the ’s are both 
essentially sharing a -size point 

function again: we can recurse the process!

Δ bi
N



Sharing a point function 
fα,β(x ≠ α) = 0, f(α) = β

What Functions can be Shared?

succinctly

𝗌𝖾𝖾𝖽i 𝗌𝖾𝖾𝖽i

⋮ ⋮

𝗌𝖾𝖾𝖽α1 𝗌𝖾𝖾𝖽′ 

α1

𝗌𝖾𝖾𝖽 N 𝗌𝖾𝖾𝖽 N

⋮ ⋮

Recursing:

bi

bα1

b N

bi

1 − bα1

b N

Giving  and sharing the ’s are both 
essentially sharing a -size point 

function again: we can recurse the process!

Δ bi
N

This + later improvements [BGI16]:

FSS for point functions with keys of size 

O(λ ⋅ log N)



We can succinctly share point functions
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Function secret sharing

{Public function

{

Short seed

Back to the PCG Template



We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
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{
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Linear combinations of

Secret sharing 
is additively 
homomorphic!



We can succinctly share point functions

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template

Linear combinations of

Secret sharing 
is additively 
homomorphic!

Are there any PRGs in this class?



The LPN assumption - primal

LPN to the Rescue
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Random matrix
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LPN yields a simple PRG in the class:
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∑
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{

Linear combination

{
(Truth table of) point functions
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Digression: LPN versus LWE

Noise

≈ $H ⋅H

Random matrix

,
LPN and LWE

LPN( ):   𝔽2 H ←$ 𝔽m×n
2 , LWE( ):   𝔽p H ←$ 𝔽m×n

p ,

‘Sparse’ ‘Small’

𝖡𝖾𝗋(𝔽2)n [−B, B]n

 entropy in the noise  LHL, 
statistical security, lattice trapdoors, 
lossiness…

O(n) ⟹

Statistical security

 entropy in the noise  
compressibility! Crucially used in recent 
results: PCGs, but also iO and batch OT.

t ⋅ log n ≪ n ⟹

Compressibility



Some of my Favourite Open Questions

Some of 

my 

favourite 

open 

question

The  

barrier
𝔽2

Th
e 

co
m

m
un

ic
at

io
n 

of
 M

PC
 w

ith
 

co
rre

la
te

d 
ra

nd
om

ne
ss

Public key 
PCFs: MPC as 
easy as key exchange

Th
e q

ue
st 

fo
r t

he
 

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable 
PCGs for OLE stuck at ?𝔽3

Can we go below 
?s/log log s

Can we get fast, usable, 
scalable MPC over the 

internet?

Can we build 3-party 
PCGs?

How fast can PCGs be?



Some of my Favourite Open Questions

Some of 

my 

favourite 

open 

question

The  

barrier
𝔽2

Th
e 

co
m

m
un

ic
at

io
n 

of
 M

PC
 w

ith
 

co
rre

la
te

d 
ra

nd
om

ne
ss

Public key 
PCFs: MPC as 
easy as key exchange

Th
e q

ue
st 

fo
r t

he
 

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable 
PCGs for OLE stuck at ?𝔽3

Can we go below 
?s/log log s

Can we get fast, usable, 
scalable MPC over the 

internet?

Can we build 3-party 
PCGs?

How fast can PCGs be?



Some of my Favourite Open Questions

Some of 

my 

favourite 

open 

question

The  

barrier
𝔽2

Th
e 

co
m

m
un

ic
at

io
n 

of
 M

PC
 w

ith
 

co
rre

la
te

d 
ra

nd
om

ne
ss

Public key 
PCFs: MPC as 
easy as key exchange

Th
e q

ue
st 

fo
r t

he
 

pe
rfe

ct
 co

de

The 2-party barrier

Why are programmable 
PCGs for OLE stuck at ?𝔽3

Can we go below 
?s/log log s

Can we get fast, usable, 
scalable MPC over the 

internet?

Can we build 3-party 
PCGs?

How fast can PCGs be?



Making the PRG more Efficient



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and 
summing unit vectors

Multiplying by a random 
matrix of size Ω(n2)



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and 
summing unit vectors

Multiplying by a random 
matrix of size Ω(n2)

 is the total amount of correlated randomness we want to generate! (Think:  )n n ∼ 230



Making the PRG more Efficient

H ⋅𝖯𝖱𝖦 : (αi)i≤t ↦ + + +

{{

Generating and 
summing unit vectors

Multiplying by a random 
matrix of size Ω(n2)

 is the total amount of correlated randomness we want to generate! (Think:  )n n ∼ 230

Can we replace  with a matrix that 
allows for fast matrix-vector product?

H

We need a rule of thumb to know which matrices will yield plausible variants of LPN



A tremendous number of attacks on LPN have been published… Crucial observation: most attacks fit in the 
same framework, the linear test framework. (*)

Linear Test 
Framework

1. Send  to H

2.      returns a test vector 
computed from  in 

unbounded time
⃗v H

⋅
The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse 
noise) is non-negligibly biased.

H

Game

Check

H

⃗v

•  Gaussian Elimination attacks 
•  Standard gaussian elimination 
•  Blum-Kalai-Wasserman [J.ACM:BKW03] 
•  Sample-efficient BKW [A-R:Lyu05] 
•  Pooled Gauss [CRYPTO:EKM17] 
•  Well-pooled Gauss [CRYPTO:EKM17] 
•  Leviel-Fouque [SCN:LF06] 
•  Covering codes [JC:GJL19] 
•  Covering codes+ [BTV15] 
•  Covering codes++ [BV:AC16] 
•  Covering codes+++ [EC:ZJW16]

•  Information Set Decoding Attacks 
•  Prange’s algorithm [Prange62] 
•  Stern’s variant [ICIT:Stern88] 
•  Finiasz and Sendrier’s variant [AC:FS09] 
•  BJMM variant [EC:BJMM12] 
•  May-Ozerov variant [EC:MO15] 
•  Both-May variant [PQC:BM18] 
•  MMT variant [AC:MMT11] 
•  Well-pooled MMT [CRYPTO:EKM17] 
•  BLP variant [CRYPTO:BLP11]

•  Other Attacks 
•  Generalized birthday [CRYPTO:Wag02] 
•  Improved GBA [Kirchner11] 
•  Linearization [EC:BM97] 
•  Linearization 2 [INDO:Saa07] 
•  Low-weight parity-check [Zichron17] 
• Low-deg approx [ITCS:ABGKR17]

•  Statistical Decoding Attacks 
•  Jabri’s attack [ICCC:Jab01] 
•  Overbeck’s variant [ACISP:Ove06] 
•  FKI’s variant [Trans.IT:FKI06] 
• Debris-Tillich variant [ISIT:DT17]

Security of (variants of) LPN - Linear Tests
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•  Finiasz and Sendrier’s variant [AC:FS09] 
•  BJMM variant [EC:BJMM12] 
•  May-Ozerov variant [EC:MO15] 
•  Both-May variant [PQC:BM18] 
•  MMT variant [AC:MMT11] 
•  Well-pooled MMT [CRYPTO:EKM17] 
•  BLP variant [CRYPTO:BLP11]

•  Other Attacks 
•  Generalized birthday [CRYPTO:Wag02] 
•  Improved GBA [Kirchner11] 
•  Linearization [EC:BM97] 
•  Linearization 2 [INDO:Saa07] 
•  Low-weight parity-check [Zichron17] 
• Low-deg approx [ITCS:ABGKR17]

•  Statistical Decoding Attacks 
•  Jabri’s attack [ICCC:Jab01] 
•  Overbeck’s variant [ACISP:Ove06] 
•  FKI’s variant [Trans.IT:FKI06] 
• Debris-Tillich variant [ISIT:DT17]

(*): highly structured algebraic codes 
(e.g. Reed-Solomon) are a different beast

Security of (variants of) LPN - Linear Tests



⋅ +G

The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse 
noise) is non-negligibly biased.

⃗v

Protects against heavy linear testsProtects against light linear tests

We have a sum of two distributions:

⋅⃗v

Induced by the noise vector

⋅G
⋅⃗v

Induced by the codeword

Claim: Assume  (number of noisy coordinates) is set to a security parameter. If there is a constant  such that 
every subset of  rows of  is linearly independent, no linear test can distinguish  from random.

t c
c ⋅ n G G ⋅ ⃗s + ⃗e

Withstanding Linear Tests
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The adversary wins in the distribution induced by

⋅

(over a random choice of secret and sparse 
noise) is non-negligibly biased.

⃗v

Protects against heavy linear testsProtects against light linear tests

We have a sum of two distributions:

⋅⃗v

Induced by the noise vector

⋅G
⋅⃗v

Induced by the codeword

Claim: Assume  (number of noisy coordinates) is set to a security parameter. If there is a constant  such that 
every subset of  rows of  is linearly independent, no linear test can distinguish  from random.

t c
c ⋅ n G G ⋅ ⃗s + ⃗e

Withstanding Linear Tests

Rephrasing the sufficient condition:

Every subset of  rows of  is linearly independent 
 the left-kernel of  does not contain nonzero vector of weight less than  
 the dual code of , i.e., the code generated by the transpose of its parity check matrix , has linear 

minimum distance

O(n) G
⟺ G O(n)
⟺ G H



Pseudorandom Correlation Generators - Efficiency

H ⋅Goal: computing fast, such that the code
G

is LPN-friendy

We want to find a matrix  such that (1) the code generated by  is 
a good code, and (2) computing  takes time  for any 

M = H⊺ M
M⊺ ⋅ ⃗v O(n) ⃗v

 (this is the transposition principle)M ⋅ ⃗v

 We need to find a good and linear-time encodable 
code. And we want it concretely efficient!
⟹



Pseudorandom Correlation Generators - Efficiency

There is an ongoing and exciting quest for pinpointing the right code for PCG applications:


• CCS:Boyle-C-Gilboa-Ishai’18  suggested using LDPC code

• CCS:Boyle-C-Gilboa-Ishai-Kohl-Rindal-Scholl’19 moved to quasi-cyclic codes 

due to concern regarding linear-time encoding of LDPC codes

• Crypto:C-Raghuraman-Rindal’21: tailored LDPC with heuristic & experimental support

• Crypto:Boyle-C-Gilboa-Ishai-Kohl-Resch—Scholl’22: Expand-Accumulate codes

• Latest news: there’s apparently a new proposal that suggests Expand-Convolute 

codes instead (and which breaks Silver along the way!)

• There are a few more codes I’d like to investigate, the quest continues!
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OLE Correlations

OLE over  is the type of correlation we want to do (semi-honest) 
secure computation of arithmetic circuits over .


In an OLE, Alice gets , Bob gets , and Alice and Bob get 
random shares of .

𝔽
𝔽

a ← 𝔽 b ← 𝔽
a ⋅ b



OLE Correlations, the LPN Way
Goal: 

- Alice gets a pseudorandom vector 

- Bob gets a pseudorandom vector 

- Alice and Bob get shares of 
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Goal: 

- Alice gets a pseudorandom vector 

- Bob gets a pseudorandom vector 

- Alice and Bob get shares of 

⃗x = H ⋅ ⃗e x⃗y = H ⋅ ⃗e y
⃗x ⊙ ⃗y

⃗x

⃗y⋅ =
H

H⊺⃗e x ⋅ ⃗e ⊺
y

⋅ ⋅

This is a -sparse matrix, i.e. a sum of  point functions! 
 can be generated with comm. 

t2 t2

⟹ O(λt2 log n)

Uses only LPN Costs !  (Think: … )ω(n2) n ∼ 230

OLE Correlations, the LPN Way



Let  be the ring  where  is a degree-  polynomial that splits entirely, and .


Ring-LPN assumption:  where  and  are random -sparse polynomials.


Observation: we can get  OLE correlations from a single ‘ring-OLE’ correlation  over : the OLE 
correlations are obtained by reducing ,  and  modulo each of the linear factors  of .


Construction: 
- Alice gets a pseudorandom polynomial  where  are -sparse polynomials over 

- Bob gets a pseudorandom vector  where  are -sparse polynomials over 


- Alice and Bob get shares of 


The polynomials  are public, and  are all -sparse polynomials

ℛ ℤp/F(X) F(X) n p > n

(a, b) ∼ (a, a ⋅ e + f ) (a, b) ← ℛ (e, f ) t

n (x, y, ⟨x ⋅ y⟩) ℛ
x y, x ⋅ y Fi F

x = a ⋅ ex + fx (ex, fx) t ℛ
y = a ⋅ ey + fy (ey, fy) t ℛ

x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20
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x ⋅ y = a2 ⋅ (exey) + a ⋅ (ex fy + fxey) + fx fy

a2, a exey, ex fy, fxey, fx fy t2

Costs only O(n ⋅ log n)
• ‘Splittable ring-LPN’ deserves further study
•  must be large!𝔽

OLE Correlations, the Ring-LPN Way
Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl’20



OLE Correlations, from Quasi-Abelian Syndrome Decoding
How do we break this ‘field-size barrier’? An answer in our recent Crypto paper 
(Bombar-C-Couvreur-Ducros’23): we move to quasi-abelian codes, which are defined 
over group algebras.


High level intuition 

The group algebra structure gives a suitable framework to find the right polynomial  
to instantiate an LPN variant over a ring  such that


•  (i.e. we get many copies of an OLE over  )

• The underlying assumption is plausibly secure (i.e. resists linear attacks)


Using multivariate rings gives us many more roots of  even for a small ! In fact, we 
can get up to  copies of an OLE over .

P
ℛ = 𝔽[X1, ⋯, Xd]/P(X1, ⋯, Xd)

ℛ ∼ 𝔽 × ⋯ × 𝔽 𝔽

P 𝔽
( |𝔽 | − 1)d 𝔽
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How do we break this ‘field-size barrier’? An answer in our recent Crypto paper 
(Bombar-C-Couvreur-Ducros’23): we move to quasi-abelian codes, which are defined 
over group algebras.


High level intuition 

The group algebra structure gives a suitable framework to find the right polynomial  
to instantiate an LPN variant over a ring  such that


•  (i.e. we get many copies of an OLE over  )

• The underlying assumption is plausibly secure (i.e. resists linear attacks)


Using multivariate rings gives us many more roots of  even for a small ! In fact, we 
can get up to  copies of an OLE over .

P
ℛ = 𝔽[X1, ⋯, Xd]/P(X1, ⋯, Xd)

ℛ ∼ 𝔽 × ⋯ × 𝔽 𝔽

P 𝔽
( |𝔽 | − 1)d 𝔽{

This only gives something meaningful up to !𝔽3
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A Closer Look at Secure Communication

> 85% of the total internet traffic is encrypted

 Let us look at secure communication’s recipe for success!⟹

Secure communication is already widely deployed and in use

Our ultimate goal is practical MPC that can be deployed and used over the web



A Closer Look at Secure Communication
Two Phases:

Key exchange phase

• One-time, simultaneous interaction

• Heavy (public key) computations

• Low communication  (not )n ⋅ | | n2

⋯

• Lightweight (symmetric) computations

• Optimal message-to-cipher ratio

Encryption phase

Heavy, but 
done only 

once

52



A Closer Look at Secure Communication
Two Phases:

Key exchange phase

• One-time, simultaneous interaction

• Heavy (public key) computations

• Low communication  (not )n ⋅ | | n2

⋯

• Lightweight (symmetric) computations

• Optimal message-to-cipher ratio

Encryption phase

Lightweight

53



Using a PRG enables a one-time generation 
of a fixed amount of correlations

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖦(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again



A pseudorandom correlation function is to a 
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again
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𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

Are there any FSS-friendly PRFs?



A pseudorandom correlation function is to a 
PCG what a PRF is to a PRG

𝖥𝖲𝖲(C ∘ 𝖯𝖱𝖥(𝗌𝖾𝖾𝖽)){
Function secret sharing

{Public function

{

Short seed

Back to the PCG Template Again

Are there any FSS-friendly PRFs?

FOCS:BCGIKS20 and Crypto:BCGIKRS22 give plausible candidates

The existence of PRFs in 
low complexity classes 
yields strong limitations 

for learning theory



Pseudorandom Correlation Functions

KA KB

FKA
( ⋅ ) FKB

( ⋅ )

• Black-box access to samples of the form 
 are indistinguishable from black-box 

access to random samples from a target correlation.

• From the viewpoint of Alice, each  is 

indistinguishable from a random value sampled 
conditioned on satisfying the correlation with . 

• Same condition in the other direction.

(FKA
(x), FKB

(x))

FKB
(x)

FKA
(x)

Correctness & security:



Public-Key Pseudorandom Correlation Functions

KA KB

FKA
( ⋅ ) FKB

( ⋅ )

• Black-box access to samples of the form 
 are indistinguishable from black-box 

access to random samples from a target correlation.

• From the viewpoint of Alice, each  is 

indistinguishable from a random value sampled 
conditioned on satisfying the correlation with . 

• Same condition in the other direction.

(FKA
(x), FKB

(x))

FKB
(x)

FKA
(x)

Correctness & security:

Achieving non-interactive silent key generation

Formally: 
•  generates public and private 

PCF keys

•  yields Bob’s PCF key 

w.r.t. Alice’s key

•  yields a pseudorandom sample

𝖪𝖾𝗒𝖦𝖾𝗇 → (𝗉𝗄, 𝗌𝗄)

𝖪𝖾𝗒𝖣𝖾𝗋(𝗉𝗄A, 𝗌𝗄B) → KAB
B

𝖤𝗏𝖺𝗅(K, x) → y



Public-Key Pseudorandom Correlation Functions

Public-key PCFs are exactly the right tool to enable scalable, on-demand 2-party 
secure computation over the Internet, with a communication and computation pattern 
close to that of secure communication over the web.


Building efficient public-key PCF is essentially a wide-open question: the recent work 
of EC:Orlandi-Scholl-Yakoubov’21 gets it for OT from QR, but efficiency is quite bad.


(Teaser) Coming soon: we have some exciting progress in this line of work, which 
does not fully solve the problem, but is a big step forward!
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Some of my Favourite Open Questions

Can we go below 
?s/log log s

No time left for that, but I’d be happy to discuss it over dinner 
tonight!

Other cool things to check out that I don’t have time to discuss:


• People have been doing great things in zero-knowledge 
using these PCG techniques (incl. right here in Aarhus!)


• Everything we have so far works only for two parties!

• … And many more



Questions?


