Correlated Pseudorandomness

Achieving faster secure computation through pseudorandom correlation generators

Geoffroy Couteau

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published 'Breaking the Circuit Size Barrier for Secure Computation under DDH' at CRYPTO'16

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published 'Breaking the Circuit Size Barrier for Secure Computation under DDH' at CRYPTO'16
I was at the time a young 2nd-year PhD student

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published 'Breaking the Circuit Size Barrier for Secure Computation under DDH' at CRYPTO'16
I was at the time a young 2nd-year PhD student
I got the feeling that this had to be useful to generate correlated randomness...

Start of the Story: Circa 2016

Elette, Niv, and Yuval had just published 'Breaking the Circuit Size Barrier for Secure Computation under DDH' at CRYPTO'16
I was at the time a young 2nd-year PhD student
I got the feeling that this had to be useful to generate correlated randomness...

- 1 A few months and a CCS'17 paper later, we concluded that the answer was 'not so much'

The Journey through Correlated Pseudorandomess

The Journey through Correlated Pseudorandomess

The Journey through Correlated Pseudorandomess

The Journey through Correlated Pseudorandomess

The Journey through Correlated Pseudorandomess

The Journey through Correlated Pseudorandomess

A Standard Cryptographic Approach

Secure Computation...

- Goal. Computing a public function on secret inputs
- Model. n players, each with a private input x_{i} interacting through authenticated channels

$$
f:(x, y) \mapsto\left(z_{A}, z_{B}\right)
$$

- Output: Alice learns z_{A} and Bob learn z_{B}
- Security: Alice and Bob learn nothing else

... Is a Practical Concern.

$$
\Omega 828
$$

The Correlated Randomness Model

The Correlated Randomness Model

The Correlated Randomness Model

The Correlated Randomness Model

Example: Beaver triples $\left\{\begin{array}{l}\left(a_{i}, b_{i}\right)_{i \leq n} \leftarrow\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)^{n} \\ \text { shares }\left(\left(a_{i}, b_{i}, a_{i} \cdot b_{i}\right)_{i \leq n}\right)\end{array}\right.$

The Correlated Randomness Model

Example: Beaver triples $\left\{\begin{array}{l}\left(a_{i}, b_{i}\right)_{i \leq n} \leftarrow\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)^{n} \\ \text { shares }\left(\left(a_{i}, b_{i}, a_{i} \cdot b_{i}\right)_{i \leq n}\right)\end{array}\right.$

A Template to Instantiate Efficiently the Correlated Randomness Model

Given a correlation C, the dealer distributes shares of $C(r)$

A Template to Instantiate Efficiently the Correlated Randomness Model

Given a correlation C, the dealer distributes shares of $C(r)$

Pseudorandom correlation generator

$\operatorname{Gen}\left(1^{\lambda}\right) \rightarrow\left(\operatorname{seed}_{A}, \operatorname{seed}_{B}\right)$ such that
(1) $\left(\operatorname{Expand}\left(A, \operatorname{seed}_{A}\right), \operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)\right)$ looks like n samples from the target correlation, and
(2) Expand $\left(A\right.$, seed $\left.{ }_{A}\right)$ looks 'random conditioned on satisfying the correlation with $\operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)$ ' to Bob (similar property w.r.t. Alice).

A Template to Instantiate Efficiently the Correlated Randomness Model: MPC with silent preprocessing

Pseudorandom correlation generator: $\operatorname{Gen}\left(1^{\lambda}\right) \rightarrow\left(\operatorname{seed}_{A}, \operatorname{seed}_{B}\right)$ such that $(1)\left(\operatorname{Expand}\left(A, \operatorname{seed}_{A}\right), \operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)\right)$ looks like n samples from the target correlation, and (2) Expand $\left(A\right.$, seed $_{A}$) looks 'random conditioned on satisfying the correlation with $\operatorname{Expand}\left(B\right.$, seed $\left._{B}\right)$ ' to Bob (similar property w.r.t. Alice).

A Template to Instantiate Efficiently the Correlated Randomness Model: MPC with silent preprocessing

Pseudorandom correlation generator: $\operatorname{Gen}\left(1^{\lambda}\right) \rightarrow\left(\operatorname{seed}_{A}, \operatorname{seed}_{B}\right)$ such that $(1)\left(\operatorname{Expand}\left(A, \operatorname{seed}_{A}\right), \operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)\right)$ looks like n samples from the target correlation, and (2) Expand $\left(A\right.$, seed $_{A}$) looks 'random conditioned on satisfying the correlation with $\operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)^{\prime}$ to Bob (similar property w.r.t. Alice).

Interactive protocol with short communication and computation; Alice and Bob store a small seed afterwards.

Preprocessing phase

A Template to Instantiate Efficiently the Correlated Randomness Model: MPC with silent preprocessing

Pseudorandom correlation generator: $\operatorname{Gen}\left(1^{\lambda}\right) \rightarrow\left(\operatorname{seed}_{A}, \operatorname{seed}_{B}\right)$ such that (1) $\left(\operatorname{Expand}\left(A, \operatorname{seed}_{A}\right), \operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)\right)$ looks like n samples from the target correlation, and (2) Expand $\left(A\right.$, seed $_{A}$) looks 'random conditioned on satisfying the correlation with $\operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)$ ' to Bob (similar property w.r.t. Alice).

A Template to Instantiate Efficiently the Correlated
 Randomness Model: MPC with silent preprocessing

Pseudorandom correlation generator: $\operatorname{Gen}\left(1^{\lambda}\right) \rightarrow\left(\operatorname{seed}_{A}, \operatorname{seed}_{B}\right)$ such that (1) $\left(\operatorname{Expand}\left(A, \operatorname{seed}_{A}\right), \operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)\right)$ looks like n samples from the target correlation, and (2) Expand $\left(A\right.$, seed $_{A}$) looks 'random conditioned on satisfying the correlation with $\operatorname{Expand}\left(B, \operatorname{seed}_{B}\right)^{\prime}$ to Bob (similar property w.r.t. Alice).

Interactive protocol with short communication and computation; Alice and Bob store a small seed afterwards.

$\operatorname{Expand}\left(\operatorname{seed}_{A}\right): \quad$ Expand $\left(\operatorname{seed}_{B}\right)$

The bulk of the preprocessing phase is offline: Alice and Bob stretch their seeds into large pseudorandom correlated strings.

Alice and Bob consume the preprocessing material in a fast, non-cryptographic online phase.

Preprocessing phase

Q: What Correlations C do we Consider?

Q: What Correlations C do we Consider?

R: It depends! What MPC Protocol do you Want?

Q: What Correlations C do we Consider?

R: It depends! What MPC Protocol do you Want?

Q: What Correlations C do we Consider?

R: It depends! What MPC Protocol do you Want?

A Template to Instantiate Efficiently the Correlated Randomness Model

Given a correlation C, the dealer distributes shares of $C(r)$

A Template to Instantiate Efficiently the Correlated Randomness Model

Given a correlation C, the dealer distributes shares of $C(r)$

Distributing $\langle C(r)\rangle$ succinctly

A Template to Instantiate Efficiently the Correlated Randomness Model

Given a correlation C, the dealer distributes shares of $C(r)$

Distributing $\langle C(r)\rangle$ succinctly

Function Secret Sharing

$$
\mathrm{FSS}\left\{\begin{array}{l}
\operatorname{Share}(f) \mapsto\left(\square \sum\right) \\
\operatorname{Eval}(\square, x)+\operatorname{Eval}(\Sigma, x)=f(x)
\end{array}\right.
$$

Function Secret Sharing

$$
\operatorname{FSS}\left\{\begin{array}{l}
\operatorname{Share}(f) \mapsto\left(\square \sum\right) \\
\operatorname{Eval}(\square, x)+\operatorname{Eval}(\zeta, x)=f(x)
\end{array}\right.
$$

\square

DDH, DCR, class groups
N^{1}

High end

iO, Multi-key threshold FHE

All polytime functions

Function Secret Sharing

$$
\operatorname{FSS}\left\{\begin{array}{l}
\operatorname{Share}(f) \mapsto\left(\square \sum\right) \\
\operatorname{Eval}(\square, x)+\operatorname{Eval}\left(\sum, x\right)=f(x)
\end{array}\right.
$$

High end

iO, Multi-key threshold FHE

All polytime functions

What Functions can be Shared?

Sharing an arbitrary function:

f
.

What Functions can be Shared?

Sharing an arbitrary function:

-

What Functions can be Shared?

What Functions can be Shared?
 succinctly

-

What Functions can be,Shared?
 succinctly

Sharing the all zero function:
$\forall x, f(x)=0$

What Functions can be Shared?
 succinctly

What Functions can be Shared?
 succinctly

What Functions can be, Shared?
 succinctly

What Functions can be, Shared?

succinctly

What Functions can be,Shared? succinctly

Sharing a point function
$f_{\alpha, \beta}(x \neq \alpha)=0, f(\alpha)=\beta$

What Functions can be, Shared?

succinctly

What Functions can be,Shared?
 succinctly

What Functions can be,Shared? succinctly

What Functions can be Shared?

succinctly

What Functions can be Shared? succinctly

What Functions can be Shared? succinctly

What Functions can be,Shared? succinctly

What Functions can be Shared? succinctly

$$
\begin{gathered}
\text { Sharing a point function } \\
f_{\alpha, \beta}(x \neq \alpha)=0, f(\alpha)=\beta
\end{gathered}
$$

Recursing:

$$
\begin{array}{cc}
b_{i} & \operatorname{seed}_{i} \\
& \vdots \\
b_{\alpha_{1}} & \operatorname{seed}_{\alpha_{1}} \\
& \vdots \\
b_{\sqrt{N}} & \operatorname{seed}_{\sqrt{N}}
\end{array}
$$

Giving Δ and sharing the b_{i} 's are both essentially sharing a \sqrt{N}-size point function again: we can recurse the process! function again:we can recurse the process.

$\operatorname{seed}_{\alpha_{1}}^{\prime} 1-b_{\alpha_{1}}$ $\operatorname{seed}_{\sqrt{N}} b_{\sqrt{N}}$

What Functions can be Shared? succinctly

Back to the PCG Template

Public function
 FSS($\overbrace{0 \cdot(\mathrm{PRG}(s e e d))}$
 Function secret sharing
 Short seed

We can succinctly share point functions

Back to the PCG Template

Public function
 FSS($\underbrace{\circ \cdot(\mathrm{PRG}(s e e d))}$
 Function secret sharing
 Short seed

Secret sharing is additively homomorphic!

We can succinctly share point functions

Linear combinations of

Back to the PCG Template

Public function
 FSS(C) $\stackrel{\sim}{\text { PRG }}($ seed $))$
 Short seed

Secret sharing is additively homomorphic!

We can succinctly share point functions

Linear combinations of

Are there any PRGs in this class?

LPN to the Rescue

The LPN assumption - primal

LPN to the Rescue

The LPN assumption - primal

LPN to the Rescue

The LPN assumption - primal

LPN to the Rescue

The LPN assumption - primal

LPN to the Rescue

The LPN assumption - dual

LPN to the Rescue

The LPN assumption - dual

LPN to the Rescue

The LPN assumption - dual

PRG: $\left(\alpha_{i}\right)_{i \leq t} \mapsto H \cdot \sum_{i=1}^{t} \vec{u}_{\alpha_{i}}$, where $\vec{u}_{\alpha_{i}}$ is the unit vector with a 1 at α_{i}

LPN to the Rescue

The LPN assumption - dual

PRG: $\left(\alpha_{i}\right)_{i \leq t} \mapsto \underbrace{H \cdot \sum_{i=1}^{t}} \vec{u}_{\alpha_{i}}$, where $\vec{u}_{\alpha_{i}}$ is the unit vector with a 1 at α_{i}

LPN to the Rescue

The LPN assumption - dual

$\operatorname{PRG}:\left(\alpha_{i}\right)_{i \leq t} \mapsto \underbrace{H \cdot \sum_{i=1}^{t}} \underbrace{\vec{u}_{\alpha_{i}}}_{\text {(Truth table of) point functions }}$, where $\vec{u}_{\alpha_{i}}$ is the unit vector with a 1 at α_{i}

Linear combination

Back to the PCG Template Again

We have FSS for a class that contains a PRG

Back to the PCG Template Again

We have FSS for a class that contains a PRG
The heavy lifting in the many subsequent works boils down to:

- Making the PRG more efficient
- Adding support for more complex C

Back to the PCG Template Again

We have FSS for a class that contains a PRG
The heavy lifting in the many subsequent works boils down to:

- Making the PRG more efficient
- Adding support for more complex C

Back to the PCG Template Again

We have FSS for a class that contains a PRG
The heavy lifting in the many subsequent works boils down to:

- Making the PRG more efficient

Both questions are deeply

- Adding support for more complex C

Digression: LPN versus LWE

Digression: LPN versus LWE

Digression: LPN versus LWE

Digression: LPN versus LWE

LPN and LWE

Compressibility
$\begin{aligned} & \operatorname{LPN}\left(\mathbb{F}_{2}\right): H \leftarrow_{\$} \mathbb{F}_{2}^{m \times n}, \\ & \\ & \operatorname{Ber}\left(\mathbb{F}_{2}\right)^{n}\end{aligned}$
'Sparse'
$t \cdot \log n \ll n$ entropy in the noise \Longrightarrow compressibility! Crucially used in recent results: PCGs, but also iO and batch OT.

Statistical security
$\operatorname{LWE}\left(\mathbb{F}_{p}\right): H \leftarrow_{\$} \mathbb{F}_{p}^{m \times n}$, \uparrow
$[-B, B]^{n}$
‘Small’
$O(n)$ entropy in the noise \Longrightarrow LHL, statistical security, lattice trapdoors, lossiness...

Some of my Favourite Open Questions

Some of my Favourite Open Questions

Some of my Favourite Open Questions

Making the PRG more Efficient

Making the PRG more Efficient

$$
\text { PRG : }\left(\alpha_{i}\right)_{i \leq t} \mapsto \quad H \quad \cdot(++++)
$$

Making the PRG more Efficient

Multiplying by a random matrix of size $\Omega\left(n^{2}\right)$

Generating and summing unit vectors

a

Making the PRG more Efficient

Multiplying by a random matrix of size $\Omega\left(n^{2}\right)$

Generating and summing unit vectors

A n is the total amount of correlated randomness we want to generate! (Think: $n \sim 2^{30}$)

Making the PRG more Efficient

Multiplying by a random matrix of size $\Omega\left(n^{2}\right)$

Generating and summing unit vectors

A n is the total amount of correlated randomness we want to generate! (Think: $n \sim 2^{30}$)

Can we replace H with a matrix that allows for fast matrix-vector product?

We need a rule of thumb to know which matrices will yield plausible variants of LPN

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published

- Gaussian Elimination attacks
- Standard gaussian elimination

Information Set Decoding Attacks

- Prange's algorithm [Prange62]
- Stern's variant [ICIT-Stern88]
- Blum-Kalai-Wasserman [J.ACM:BKw

Stern's variant [ICIT.Stern88]

- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]
- Statistical Decoding Attacks
- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKl's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]

Other Attacks

- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

Crucial observation: most attacks fit in the same framework, the linear test framework. (*)

Check

The adversary wins in the distribution induced by

(over a random choice of secret and sparse noise) is non-negligibly biased.

Security of (variants of) LPN - Linear Tests

A tremendous number of attacks on LPN have been published

- Gaussian Elimination attacks
- Standard gaussian elimination

Information Set Decoding Attacks

- Standard gaussian elimination - Prange's algorithm [Prange62]
- Sample-efficient BKW [A-R.Lyu05]

Sample efticient BKW [A-R:Lyu05]

- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]

Other Attacks

- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]
- Low-deg approx [ITCS:ABGKR17]

Crucial observation: most attacks fit in the same framework, the linear test framework. (*)

Check
The adversary wins in the distribution induced by

(over a random choice of secret and sparse noise) is non-negligibly biased.

Withstanding Linear Tests

The adversary wins in the distribution induced by

(over a random choice of secret and sparse noise) is non-negligibly biased.

We have a sum of two distributions:

Induced by the codeword
\vec{v}

Protects against light linear tests

Induced by the noise vector

-

Protects against heavy linear tests

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant c such that every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{S}+\vec{e}$ from random.

Withstanding Linear Tests

The adversary wins in the distribution induced by

(over a random choice of secret and sparse noise) is non-negligibly biased.

We have a sum of two distributions:

Induced by the codeword

Protects against light linear tests

Induced by the noise vector
$\quad \vec{v}$
-

Protects against heavy linear tests

Claim: Assume t (number of noisy coordinates) is set to a security parameter. If there is a constant c such that every subset of $c \cdot n$ rows of G is linearly independent, no linear test can distinguish $G \cdot \vec{s}+\vec{e}$ from random.

Rephrasing the sufficient condition:

Every subset of $O(n)$ rows of G is linearly independent
\Longleftrightarrow the left-kernel of G does not contain nonzero vector of weight less than $O(n)$
\Longleftrightarrow the dual code of G, i.e., the code generated by the transpose of its parity check matrix H, has linear minimum distance

Pseudorandom Correlation Generators - Efficiency

We want to find a matrix $M=H^{\top}$ such that (1) the code generated by M is a good code, and (2) computing $M T \cdot \vec{v}$ takes time $O(n)$ for any \vec{v} $M \cdot \vec{v}$ (this is the transposition principle)
\Longrightarrow We need to find a good and linear-time encodable code. And we want it concretely efficient!

Pseudorandom Correlation Generators - Efficiency

There is an ongoing and exciting quest for pinpointing the right code for PCG applications:

- CCS:Boyle-C-Gilboa-Ishai'18 suggested using LDPC code
- CCS:Boyle-C-Gilboa-Ishai-Kohl-Rindal-Scholl'19 moved to quasi-cyclic codes due to concern regarding linear-time encoding of LDPC codes
- Crypto:C-Raghuraman-Rindal'21: tailored LDPC with heuristic \& experimental support
- Crypto:Boyle-C-Gilboa-Ishai-Kohl-Resch—Scholl'22: Expand-Accumulate codes
- Latest news: there's apparently a new proposal that suggests Expand-Convolute codes instead (and which breaks Silver along the way!)
- There are a few more codes l'd like to investigate, the quest continues!

Some of my Favourite Open Questions

Some of my Favourite Open Questions

OLE Correlations

OLE over \mathbb{F} is the type of correlation we want to do (semi-honest) secure computation of arithmetic circuits over \mathbb{F}.

In an OLE, Alice gets $a \leftarrow \mathbb{F}$, Bob gets $b \leftarrow \mathbb{F}$, and Alice and Bob get random shares of $a \cdot b$.

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector \vec{x}
- Bob gets a pseudorandom vector \vec{y}
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector \vec{x}
- Bob gets a pseudorandom vector \vec{y}
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector $\vec{x}=H \cdot \vec{e}_{x}$
- Bob gets a pseudorandom vector $\vec{y}=H \cdot \vec{e}_{y}$
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector $\vec{x}=H \cdot \vec{e}_{x}$
- Bob gets a pseudorandom vector $\vec{y}=H \cdot \vec{e}_{y}$
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector $\vec{x}=H \cdot \vec{e}_{x}$
- Bob gets a pseudorandom vector $\vec{y}=H \cdot \vec{e}_{y}$
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector $\vec{x}=H \cdot \vec{e}_{x}$
- Bob gets a pseudorandom vector $\vec{y}=H \cdot \vec{e}_{y}$
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

OLE Correlations, the LPN Way

Goal:

- Alice gets a pseudorandom vector $\vec{x}=H \cdot \vec{e}_{x}$
- Bob gets a pseudorandom vector $\vec{y}=H \cdot \vec{e}_{y}$
- Alice and Bob get shares of $\vec{x} \odot \vec{y}$

00
Uses only LPN
This is a t^{2}-sparse matrix, i.e. a sum of t^{2} point functions!
\Longrightarrow can be generated with comm. $O\left(\lambda t^{2} \log n\right)$

OLE Correlations, the Ring-LPN Way

Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl'20

Let \mathscr{R} be the ring $\mathbb{Z}_{p} / F(X)$ where $F(X)$ is a degree- n polynomial that splits entirely, and $p>n$.
Ring-LPN assumption: $(a, b) \sim(a, a \cdot e+f)$ where $(a, b) \leftarrow \mathscr{R}$ and (e, f) are random t-sparse polynomials.
Observation: we can get n OLE correlations from a single 'ring-OLE' correlation $(x, y,\langle x \cdot y\rangle)$ over \mathscr{R} : the OLE correlations are obtained by reducing x, y, and $x \cdot y$ modulo each of the linear factors F_{i} of F.

Construction:

- Alice gets a pseudorandom polynomial $x=a \cdot e_{x}+f_{x}$ where $\left(e_{x}, f_{x}\right)$ are t-sparse polynomials over \mathscr{R}
- Bob gets a pseudorandom vector $y=a \cdot e_{y}+f_{y}$ where $\left(e_{y}, f_{y}\right)$ are t-sparse polynomials over \mathscr{R}
- Alice and Bob get shares of $x \cdot y=a^{2} \cdot\left(e_{x} e_{y}\right)+a \cdot\left(e_{x} f_{y}+f_{x} e_{y}\right)+f_{x} f_{y}$

The polynomials a^{2}, a are public, and $e_{x} e_{y}, e_{x} f_{y}, f_{x} e_{y}, f_{x} f_{y}$ are all t^{2}-sparse polynomials

OLE Correlations, the Ring-LPN Way

Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl'20

Let \mathscr{R} be the ring $\mathbb{Z}_{p} / F(X)$ where $F(X)$ is a degree- n polynomial that splits entirely, and $p>n$.
Ring-LPN assumption: $(a, b) \sim(a, a \cdot e+f)$ where $(a, b) \leftarrow \mathscr{R}$ and (e, f) are random t-sparse polynomials.
Observation: we can get n OLE correlations from a single 'ring-OLE' correlation $(x, y,\langle x \cdot y\rangle)$ over \mathscr{R} : the OLE correlations are obtained by reducing x, y, and $x \cdot y$ modulo each of the linear factors F_{i} of F.

Construction:

- Alice gets a pseudorandom polynomial $x=a \cdot e_{x}+f_{x}$ where $\left(e_{x}, f_{x}\right)$ are t-sparse polynomials over \mathscr{R}
- Bob gets a pseudorandom vector $y=a \cdot e_{y}+f_{y}$ where $\left(e_{y}, f_{y}\right)$ are t-sparse polynomials over \mathscr{R}
- Alice and Bob get shares of $x \cdot y=a^{2} \cdot\left(e_{x} e_{y}\right)+a \cdot\left(e_{x} f_{y}+f_{x} e_{y}\right)+f_{x} f_{y}$

The polynomials a^{2}, a are public, and $e_{x} e_{y}, e_{x} f_{y}, f_{x} e_{y}, f_{x} f_{y}$ are all t^{2}-sparse polynomials

Costs only $O(n \cdot \log n)$

- 'Splittable ring-LPN' deserves further study

OLE Correlations, the Ring-LPN Way

Crypto: Boyle-C-Gilboa-Ishai-Kohl-Scholl'20

Let \mathscr{R} be the ring $\mathbb{Z}_{p} / F(X)$ where $F(X)$ is a degree- n polynomial that splits entirely, and $p>n$.
Ring-LPN assumption: $(a, b) \sim(a, a \cdot e+f)$ where $(a, b) \leftarrow \mathscr{R}$ and (e, f) are random t-sparse polynomials.
Observation: we can get n OLE correlations from a single 'ring-OLE' correlation $(x, y,\langle x \cdot y\rangle)$ over \mathscr{R} : the OLE correlations are obtained by reducing x, y, and $x \cdot y$ modulo each of the linear factors F_{i} of F.

Construction:

- Alice gets a pseudorandom polynomial $x=a \cdot e_{x}+f_{x}$ where $\left(e_{x}, f_{x}\right)$ are t-sparse polynomials over \mathscr{R}
- Bob gets a pseudorandom vector $y=a \cdot e_{y}+f_{y}$ where $\left(e_{y}, f_{y}\right)$ are t-sparse polynomials over \mathscr{R}
- Alice and Bob get shares of $x \cdot y=a^{2} \cdot\left(e_{x} e_{y}\right)+a \cdot\left(e_{x} f_{y}+f_{x} e_{y}\right)+f_{x} f_{y}$

The polynomials a^{2}, a are public, and $e_{x} e_{y}, e_{x} f_{y}, f_{x} e_{y}, f_{x} f_{y}$ are all t^{2}-sparse polynomials

Costs only $O(n \cdot \log n)$

- 'Splittable ring-LPN' deserves further study
- F must be large!

OLE Correlations, from Quasi-Abelian Syndrome Decoding

How do we break this 'field-size barrier'? An answer in our recent Crypto paper (Bombar-C-Couvreur-Ducros'23): we move to quasi-abelian codes, which are defined over group algebras.

High level intuition

The group algebra structure gives a suitable framework to find the right polynomial P to instantiate an LPN variant over a ring $\mathscr{R}=\mathbb{F}\left[X_{1}, \cdots, X_{d}\right] / P\left(X_{1}, \cdots, X_{d}\right)$ such that

- $\mathscr{R} \sim \mathbb{F} \times \cdots \times \mathbb{F}$ (i.e. we get many copies of an OLE over \mathbb{F})
- The underlying assumption is plausibly secure (i.e. resists linear attacks)

Using multivariate rings gives us many more roots of P even for a small $\mathbb{F}!$ In fact, we can get up to $(|\mathbb{F}|-1)^{d}$ copies of an OLE over \mathbb{F}.

OLE Correlations, from Quasi-Abelian Syndrome Decoding

How do we break this 'field-size barrier'? An answer in our recent Crypto paper (Bombar-C-Couvreur-Ducros'23): we move to quasi-abelian codes, which are defined over group algebras.

High level intuition

The group algebra structure gives a suitable framework to find the right polynomial P to instantiate an LPN variant over a ring $\mathscr{R}=\mathbb{F}\left[X_{1}, \cdots, X_{d}\right] / P\left(X_{1}, \cdots, X_{d}\right)$ such that

- $\mathscr{R} \sim \mathbb{F} \times \cdots \times \mathbb{F}$ (i.e. we get many copies of an OLE over \mathbb{F})
- The underlying assumption is plausibly secure (i.e. resists linear attacks)

Using multivariate rings gives us many more roots of P even for a small \mathbb{F} ! In fact, we can get up to $(|\mathbb{F}|-1)^{d}$ copies of an OLE over \mathbb{F}.

This only gives something meaningful up to \mathbb{F}_{3} !

Some of my Favourite Open Questions

Some of my Favourite Open Questions

Can we get fast, usable, scalable MPC over the internet?

A Closer Look at Secure Communication

Our ultimate goal is practical MPC that can be deployed and used over the web

Secure communication is already widely deployed and in use

$>85 \%$ of the total internet traffic is encrypted
\Longrightarrow Let us look at secure communication's recipe for success!

A Closer Look at Secure Communication

Two Phases:

Key exchange phase

- One-time, simultaneous interaction
- Heavy (public key) computations
- Low communication $n \cdot \mid\left(\right.$ not $\left.n^{2}\right)$

Encryption phase

- Lightweight (symmetric) computations

A Closer Look at Secure Communication

Two Phases:
Key exchange phase

- One-time, simultaneous interaction
- Heavy (public key) computations
- Low communication $n \cdot \mid\left(\right.$ not $\left.n^{2}\right)$

Encryption phase

- Lightweight (symmetric) computations

Back to the PCG Template Again

- 1 Using a PRG enables a one-time generation of a fixed amount of correlations

Back to the PCG Template Again

A pseudorandom correlation function is to a PCG what a PRF is to a PRG

Back to the PCG Template Again

A pseudorandom correlation function is to a PCG what a PRF is to a PRG

Back to the PCG Template Again

FOCS:BCGIKS20 and Crypto:BCGIKRS22 give plausible candidates

Pseudorandom Correlation Functions

Correctness \& security:

- Black-box access to samples of the form $\left(F_{K_{A}}(x), F_{K_{B}}(x)\right)$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_{B}}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_{A}}(x)$.
- Same condition in the other direction.

Public-Key Pseudorandom Correlation Functions

Correctness \& security:

- Black-box access to samples of the form $\left(F_{K_{A}}(x), F_{K_{B}}(x)\right)$ are indistinguishable from black-box access to random samples from a target correlation.
- From the viewpoint of Alice, each $F_{K_{B}}(x)$ is indistinguishable from a random value sampled conditioned on satisfying the correlation with $F_{K_{A}}(x)$.
- Same condition in the other direction.

Achieving non-interactive silent key generation

Formally:

- KeyGen \rightarrow (pk, sk) generates public and private PCF keys
- KeyDer $\left(\mathrm{pk}_{A}, \mathrm{sk}_{B}\right) \rightarrow K_{B}^{A B}$ yields Bob's PCF key w.r.t. Alice's key
- $\operatorname{Eval}(K, x) \rightarrow y$ yields a pseudorandom sample

Public-Key Pseudorandom Correlation Functions

Public-key PCFs are exactly the right tool to enable scalable, on-demand 2-party secure computation over the Internet, with a communication and computation pattern close to that of secure communication over the web.

Building efficient public-key PCF is essentially a wide-open question: the recent work of EC:Orlandi-Scholl-Yakoubov'21 gets it for OT from QR, but efficiency is quite bad.
(Teaser) Coming soon: we have some exciting progress in this line of work, which does not fully solve the problem, but is a big step forward!

Some of my Favourite Open Questions

Some of my Favourite Open Questions

Some of my Favourite Open Questions

No time left for that, but l'd be happy to discuss it over dinner tonight!
Can we go below
$s / \log \log s$?
Other cool things to check out that I don't have time to discuss:

- People have been doing great things in zero-knowledge using these PCG techniques (incl. right here in Aarhus!)
- Everything we have so far works only for two parties!
- ... And many more

Questions?

