Secure Computation

In this course, we will Introduce secure computation, an active

research area Iin cryptography that aims at protecting private data
even when they are used in computations.

The slides for the course will be online after the course. | encourage
you to take notes and try to solve the exercises which will come up

during the session. If you have any question after the course, don’t
hesitate to mail me (address below)

Geoftfroy Couteau
couteau@irif.fr
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Reminder - Two-Party Computation
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Boolean Circuits

Claim: any polytime-computable function can be computed by a poly size boolean
circuit over the {XOR, AND} bases.
Proof: that’'s how your computer does It.
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Garbled Circuits

Idea: « encrypting » the gates such that they can only be evaluated given appropriate
keys, and while hiding their exact behavior.
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Garbled Circuits

Idea: « encrypting » the gates such that they can only be evaluated given appropriate
keys, and while hiding their exact behavior.
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Garbled Circuits
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Garbled Circuits
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Two-Party Secure Computation for All
Functions




Garbled Circuits
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Garbled Circuits
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Garbled Circuits

K) K <2
K1 @@ KL KL KL
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Fro (Fke (KY)) KO
FK;}I (FK,?2 (Ki)) Kl
X ~ )
Fro (Fkz (K)) Fio (Fij (0))
) Fia (Fig(1))
Fry(Fk:(1))

D . send directly D . use oblivious transfer



Two-Party Secure Computation for All
Functions
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Secure Computation with Many Players




Secret Sharing

The Problem - Concrete Version

A company owns some very sensitive piece of
information (e.g. a recipe, a business plan, etc). It
has a board, composed of three members. The
CEO wants to hand this information to the board,
with the following guarantees:

- |f two (or more) members of the board agree to
reveal the secret information to someone else,
then they can do i;

* However, no single board member should be
able to leak any information about the secret,
even if s.he is completely malicious.




Secret Sharing

The Problem - Concrete Version

A company owns some very sensitive piece of
information (e.g. a recipe, a business plan, etc). It
has a board, composed of three members. The
CEO wants to hand this information to the board,
with the following guarantees:

- |f two (or more) members of the board agree to
reveal the secret information to someone else,
then they can do i;

* However, no single board member should be
able to leak any information about the secret,
even if s.he is completely malicious.

|deas?




Secret Sharing

The Problem - Abstract Version

® (s1,S9,S83,54,55) = Share(s)
® Reconstruct({s;}icqg) = s ift |Q] > 3
® {s;}ico leaks nothing about s if |Q] < 3

(t,n)-secret sharing scheme

We want to split a secret s between n parties
such that:

» |f at least t out of n parties collaborate, they
can jointly reconstruct the secret s, but

- |f strictly less than t parties collaborate, they
learn no information whatsoever about s



(n,n)-Secret Sharing

Important: convince yourself that \V/j, (Si)i;éj

A simple scheme: leaks no information about S

Secret: s € {0, 1}€

Share: Vi € [1,n — 1|, s; < {0, 1}€
Sp < S1DS2D---DSp—1DS

Reconstruct: S = S1 © SS9 D - D Sy,




(n,n)-Secret Sharing

Important: convince yourself that \V/j, (Si)i;éj

A simple scheme: leaks no information about S

Secret: s € {0, 1}€

Share: Vi € [1,n — 1|, s; < {0, 1}€
Sp < S1DS2D---DSp—1DS

Reconstruct: S = S1 © SS9 D - D Sy,

What about (t,n)-sharing?




Secret Sharing: Blakley’'s Scheme

t
. _ Secret: § & 4ﬂp
_ st—1
N Share: (817”' 78t—1) <r <1p
S= (51, ,8¢-1,5)
Each party gets one equation ' Share of
| | player I.
< 1t parties gets an underdetermined
system of equations -> the last entry of the
vector s Is undetermined. Reconstruct: Gaussian elimination

t parties have an invertible submatrix of M
and can fully solve the system.



Secret Sharing: Blakley’'s Scheme

Equivalently: each party gets some hyperplane,
and the secret is (a coordinate of) the only point at
the intersection of all hyperplanes.

<

Secret: § & “p
_ ~t—1
Share: (517 S 78t—1) <r 4p
S= (51, ,8¢-1,5)
—— Share qf
player I.

Reconstruct: Gaussian elimination



Secret Sharing: Blakley’'s Scheme

The intersection of t (t-1)-dimensional hyperplanes
Is always a single point, while the intersection of
any smaller number leaves all possibilities totally
identical for (say) the x coordinate.

Equivalently: each party gets some hyperplane,
and the secret is (a coordinate of) the only point at
the intersection of all hyperplanes.



Secret Sharing: Blakley’'s Scheme

The shares are large... Can we

be more efficient?

Also: it’s not 100% clear how to construct the matrix M.



Secret Sharing: Blakley’'s Scheme

Let’s step back and think: we want that
- Given t points, you have the full information about something
- Given (t-1) points, there are still many remaining options.

Any idea what could possibly be a perfect fit?



Secret Sharing: Blakley’'s Scheme

Let’s step back and think: we want that
- Given t points, you have the full information about something
- Given (t-1) points, there are still many remaining options.

Any idea what could possibly be a perfect fit?



Secret Sharing: Blakley’'s Scheme

Let’s step back and think: we want that
- Given t points, you have the full information about something
- Given (t-1) points, there are still many remaining options.

Any idea what could possibly be a perfect fit?

Polynomial interpolation



Secret Sharing: Shamir’s Scheme
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Reconstruct: Lagrange interpolation!



Secret Sharing: Shamir’s Scheme

<

Secret: S &€ [
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Share: (317 S 7St—1) r

PS(X):3+2—:37;-Xi
P(1)7P(2)72217P(n)

Reconstruct: Lagrange interpolation!

A share Is a single field element



The GMW Protocol

Reminder: the Model Previously...

® \\Ve solved the 2-party case with garbled circuits
® Our function / was seen as a boolean circuit:

G (oG () ) Qeile) ()
& oo & oo
& e

" o

Goal

o
v

L1

We will now see how to handle the general case
. . of secure computation between n players, step
® Public function by step. This protocol will rely crucially on the
® All players want to get (71,22, 3,74, T5) two ingredients we have seen: a computational
ingredient (oblivious transfer) and an information

® No player should learn anything more theoretic ingredient (secret sharing).



Warm-up |: 2-Party Product Sharing

Goal: generate a (2,2)-

sharing of the product
L1L9.

(y1,y2) random conditioned on y; @ ys = 122
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sharing of the product
L1L9.

(y1, y2) random conditioned on y; P yo = 122

Exercise: build this protocol



Warm-up |: 2-Party Product Sharing

‘Secure Product’

Functionality

(y1, y2) random conditioned on y; P yo = 122

Exercise: build this protocol



Step-by Step Solution

Core idea: a secure product
functionality is an oblivious

transfer in disguise!




Step-by Step Solution

® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9
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® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9
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Step-by Step Solution

® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9
® \What should be Bob’s input?



Step-by Step Solution

A .

® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9

L1

® \What should be Bob’s input? Let’s work out the equation:



Step-by Step Solution

2
=0

® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9

L1

® \What should be Bob’s input? Let’s work out the equation:
Sgo = T2+ 851+ (1 — T2) - S0
= T9 - 51D (1D x2) - Sg
= 50 @ (50 D 51) - T2



Step-by Step Solution

2
=0

® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9

L1

® \What should be Bob’s input? Let’s work out the equation:
Sgo = T2+ 851+ (1 — T2) - S0
= T9 - 51D (1D x2) - Sg

= 50 @ (50 D 51) - T2

— 50@5332:(50@51>'552




Step—by Step Solution

80781

L1

-0

® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9

® \What should be Bob’s input? Let’s work out the equation:

Sx

2

To - S1+ (1 — o) - S
To-S1D(1Daxsy)-s

so D (so @ s1) - T2

0

—> a@ Sro —

Share of Bob

-

This should be X1



Step—by Step Solution

80781

L1
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® \We use an OT functionality where Alice is the receiver, and her selection bit is her input X9

® \What should be Bob’s input? Let’s work out the equation:

Sx

2

To - S1+ (1 — o) - S
To-S1D(1Daxsy)-s

so D (so @ s1) - T2

0

Share of Bob This should be X1
—> (SQ, 81) are (2,2)-shares of X1.




Step-by Step Solution

: (8(), 81) L2
v (0 X9
— . ——_—
Shares L1 into (507 51) L2
(hence, S is uniformly random)
® Bob sets S to be his share ® Alice sets Sy, to be her share

SO 69 5.2132 ::E]_ "//UQ



Warm-up Il: Variant

This time, Alice and Bob start with shares of values (x,y), and want to compute shares of the product x.y

‘Secure Shared

Product’

(a1,b1) are shares of x
(az, by) are shares of y
(21, 2z2) are random shares of z = x - y



Warm-up Il: Variant

This time, Alice and Bob start with shares of values (x,y), and want to compute shares of the product x.y

A
A4

% ‘Secure Shared
ﬁ
Product’

b N

Exercise ll: build this protocol

(a1,b1) are shares of x
(az, by) are shares of y
(21, 2z2) are random shares of z = x - y




Solution

o)

(b1, b2)

r-y = (a1 +by) - (az + b2)
= a1 -as+ay-by+ag by + b1 -0

A
A4




Solution

Value known to Alice Value known to Bob

Each of these values is the product of a value known
to Alice and a value known to Bob



Solution
Step 1:

‘Secure Product’
Functionality

x-y = a1+b1 ag—l—bg

Value known to Alice




Solution
Step 2:

‘Secure Product’
Functionality

(b1, b2)

-y = (ay+by)- (az + b2)

—| a1 - a2 -I-m-l- as - by -I—

Value known to Alice




Solution

Step 3:
g L ocal computation.

A4

(b17 b2) (@1, Clz)

Ty = ( @1—|-b1 az—l—bz g

% :

U1+ U1 + b]_ bQ

Q Us + U2 + dq - A2

Value known to Alice Value known to Bob

Each of these values is the product of a value known
to Alice and a value known to Bob




Solution
Step 3:

Local computation.




Warm-up lll: Generalization

This time, we have n parties, holding (n,n) shares of x and y, and they should compute (n,n) shares of x.y

5 5
$:@$z‘ ?J:@?/z‘
i=1 i=1

Goal: generate uniformly random (21, SR 25)
D

conditionedon I * Y — @ )
1=1




Warm-up lll: Generalization

This time, we have n parties, holding (n,n) shares of x and y, and they should compute (n,n) shares of x.y

5 5
55:@37@' ?J:@?/z‘
i=1 i=1

Goal: generate uniformly random (21, SR 25)
D
conditionedon I * Y — @ )
1=1

Exercise lll - should be easy



Solution

This time, we have n parties, holding (n,n) shares of x and y, and they should compute (n,n) shares of x.y

n n
D | Dy | =Dri-ws

-(¢e0) - (eem

17
Value known to player |

Use a secure multiplication between players i and j
=> needs 1 - (n — 1) secure multiplications in total.



Back to the GMW Protocol

Reminder: the Model Previously...

® \\Ve solved the 2-party case with garbled circuits
® Our function / was seen as a boolean circuit:
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® Public function f
® All players want to get f(x1, 72, 23,74, 5)
® No player should learn anything more



Back to the GMW Protocol

The wires carry the intermediate values of the computation:
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Back to the GMW Protocol

The players will securely evaluate the boolean circuit, gate by gate.

The protocol maintains the following invariant: the parties will hold (n,n)-secret

shares of the values on the two input wires of the current gate, and will securely
compute (n,n)-secret shares of the values on the output wire of this gate.
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Back to the GMW Protocol

Convince yourself that this works
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(x1 B x2) B a3 - 24



Inputs

=@

1=1

y:@yi

1=1

Back to the GMW Protocol

Evaluating a XOR gate

Method



Inputs

=@

1=1

y:@yi

1=1

Back to the GMW Protocol

Evaluating a XOR gate

Method

Easy: just locally xor
the shares!



Inputs

=@

1=1

y:@yi

1=1

Back to the GMW Protocol

Evaluating a AND gate

Method

We already solved it!
(that was warm-up llI)



Wrapping Up

» Each party shares its inputs into n shares (bitwise) and sends one share / party
» For each XOR gates, the parties locally xor their shares of the input values

» For each AND gate, the parties use n*(n-1) secure multiplication protocols to
reconstruct shares of the output (this necessitates n*(n-1) oblivious transfers)

» When arriving at the output wires, the parties broadcast their shares of the
output value and reconstruct them.



Comparison with Garbled Circuits

GMW Yao
 Function represented by a boolean circuit » Function represented by a boolean circuit
* n parties, use oblivious transfers for each + 2 parties, use oblivious transfers for
AND gate, and local computation for each transferring the input keys

XOR gate

« Garbled circuit: 4 ciphertexts / gate
* Needs n*(n-1)*[number of AND gates] OTs

Core Differences:
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* n parties, use oblivious transfers for each + 2 parties, use oblivious transfers for
AND gate, and local computation for each transferring the input keys

XOR gate

« Garbled circuit: 4 ciphertexts / gate
* Needs n*(n-1)*[number of AND gates] OTs
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« GMW: number of rounds of communication O(circuit depth), versus O(1) for Yao

- GMW: public key cryptography for each gate



Comparison with Garbled Circuits

GMW Yao
 Function represented by a boolean circuit » Function represented by a boolean circuit
* n parties, use oblivious transfers for each + 2 parties, use oblivious transfers for
AND gate, and local computation for each transferring the input keys

XOR gate

« Garbled circuit: 4 ciphertexts / gate
* Needs n*(n-1)*[number of AND gates] OTs

Core Differences:

* Yao: no free XORs _ , ,
=> solved in [Kolesnikov-Schneider08]

« GMW: number of rounds of communication O(circuit depth), versus O(1) for Yao

=> solved in [Bellare-Micali-Rogaway90]
- GMW: public key cryptography for each gate

=> solved in [Ishai-Kilian-Nissim-Petrank03]



Exo: reduction randomized -> deterministic



Secure Computation against Malicious
Adversaries




Reminder - The Model

Real World

This Is the model we’ve focused on

1. Honest-but-curious corruption

The corrupted parties follow the specification of
the protocol. The adversary is passive: he tries
to retrieve private information by observing the
transcript.

2. Malicious corruption

The adversary fully control the corrupted
Adversarial model parties, and can make them behave arbitrarily in
the protocol.

® An adversary can corrupt a subset of the players
® [wo standard corruption models



Reminder - The Model

Real World

* @ 1. Honest-but-curious corruption
T4 N

The corrupted parties follow the specification of
the protocol. The adversary is passive: he tries
to retrieve private information by observing the
transcript.

2. Malicious corruption

The adversary fully control the corrupted
Adversarial model parties, and can make them behave arbitrarily in
the protocol.

® An adversary can corrupt a subset of the players
_ Remainder of this lesson
® [wo standard corruption models



Core Idea: GMW Compiler

Honest-But Curious Protocol Malicious Protocol

We need three tools:

# \’ o

| e A ‘commitment scheme’
0 A semi-honest protocol

We already have one

e A ‘zero-knowledge proof system’ for NP

=> remainder of this course



Commitments



Commitment Scheme: Coin-Flipping Over the Phone

Alice and Bob want to flip a coin over the phone:

Too bad, it was tail.
| won!

How can they prevent cheating behaviors?




Commitment Scheme: Coin-Flipping Over the Phone

Let’s first see how they could proceed using a post office

M Q
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Solution

Let’s first see how they could proceed using a post office

0
0 ﬁ') Bob flips a coin, writes the result on a
letter, which he puts into a locked box.

e Alice picks head or tail and tells it to Bob.

Bob announces the result and sends the key to
the box, proving that the result of the coin flip
was fixed before Alice made her choice.




Solution - Core Component

The core object used to solve the problem is a box with a message inside. Looking at the solution,
there are two properties which we wanted from this object:

- When she receives a box with a message inside, Alice cannot see this message

- When Bob reveals the content of the box, he cannot lie about what was actually inside

K

A commitment scheme is a cryptographic primitive that securely realizes the above object. More
precisely, a commitment scheme is a pair of algorithms (Commit, Open) such that:

- Commit(m;r), with message m and randomness r, produces a commitment ¢ and an opening d

- Verify(c,m,d), on input a commitment ¢, a message m, and an opening d, output ‘yes’ or ‘no’.

A commitment scheme must satisfy two properties:

- hiding: for all pairs (m, m’), Commit(m) and Commit(m’) are computationally indistinguishable.

- binding: for any commitment ¢, no PPT adversary can find (m,d) and (m’,d’) with m =/= m’, such
that Verify(c,m,d) = Verify(c,m’,d’) = 1.



Solution - Core Component

The core object used to solve the problem is a box with a message inside. Looking at the solution,
there are two properties which we wanted from this object:

- When she receives a box with a message inside, Alice cannot see this message -> hiding

- When Bob reveals the content of the box, he cannot lie about what was actually inside -> binding

K

A commitment scheme is a cryptographic primitive that securely realizes the above object. More
precisely, a commitment scheme is a pair of algorithms (Commit, Open) such that:

- Commit(m;r), with message m and randomness r, produces a commitment ¢ and an opening d

- Verify(c,m,d), on input a commitment ¢, a message m, and an opening d, output ‘yes’ or ‘no’.

A commitment scheme must satisfy two properties:

- hiding: for all pairs (m, m’), Commit(m) and Commit(m’) are computationally indistinguishable.

- binding: for any commitment ¢, no PPT adversary can find (m,d) and (m’,d’) with m =/= m’, such
that Verify(c,m,d) = Verify(c,m’,d’) = 1.



Commitment Scheme: Coin-Flipping Over the Phone

We can finally provide a full solution to our problem:

A ¢ = Commit(‘tail’;r)
QO ——9) Q
A

f!g) Verify(c,’tail’,d) = 1 ?




Commitment Scheme - Constructions

From a pseudorandom number generator:

» This commitment scheme will be interactive: the Commit algorithm is actually a
two-party protocol between the committer and the verifier.

- Bob selects a random 3n-bit vector x and sends it to Alice

- Alice selects a random seed s and compute y = PRG(s)

- Commit:if b= 1,send y,elsesendz =x P y.

- Open: send s, Bob can then check z = PRG(s) or PRG(s) é x.

- Statistical hiding: find (s, s") such that PRG(s) = PRG(s") @ x. ..

» Computational binding: PRG(s) &~ random



Commitment Scheme - Constructions

From a collision-resistant hash function (e.g. SHA-256):

- H is a function such that, for any y, it is hard to find x; # x, with H(x;) = H(x,).
» Commit(b): pick a random string r with » = b mod 2, set ¢ = H(r).

- Open: reveal r. Verify(c, b, r): check that r = b mod 2 and ¢ = H(r).

Security analysis:

* Binding: follows directly from the collision resistance.

- Hiding: pretty hard - we will not do It.

Note: there are constructions from pretty much anything you can think of -

pseudorandom generators, AES, RSA, DDH, any standard cryptographic
primitive...



Zero-Knowledge Proofs



Second Tool: Zero-Knowledge Proofs

Scenario: you just solved a millenium problem, can you prove it to your friends?

A4

»

2
oA

001




A Bit of Formalism: P, NP, Interactive Proofs

Some basics of complexity theory:

» A language L is a set of bitstrings.

- P is the class of all languages which can be decided in polynomial time. More formally: a language &
is in P if there exists a polynomial-time Turing machine which, for any n, on input a bitstring x € {0,1}",
runs in time poly(n) and outputs 1 if and only if x belongs to Z.

NP is the class of all languages £ which admit an efficient (i.e. polytime) proof of membership. More
formally: a language £ is in NP if there exists a polynomial-time Turing machine M such that

L ={xe{0,1}*:dw,|w|=poly(|x]|) AMx,w) =1}

Intuitively, the statements of the form ‘x belongs to &£’ for some NP language £ capture all efficiently
verifiable statements.

» A language £ is NP-complete if &£ is in NP, and the existence of a polytime algorithm for & implies
the existence of a poly time algorithm for any language of NP,



Zero-Knowledge Proofs: Definition

A zero-knowledge proof of knowledge (ZKPoK) provides a mechanism to demonstrate that you know the
proof of a statement (e.g. a theorem), without revealing anything beyond the fact that the statement is
true (and that you know a proof).

More formally: a zero-knowledge proof is an interactive protocol between a prover and a verifier.

A Common word (statement): x

o)

Vv

Prover (with withess w) Verifier
A zero-knowledge proof for ‘x belongs to the language £’ must satisfy three properties:

- Correctness: if indeed x belong to £ and the prover (with w) follows the protocol, the verifier accepts.
- Soundness: if x does not belong to &, no cheating prover can cause the verifier to accept.

- Zero-knowledge: there is a simulator which, for any x in &£, can simulate (without w) the interaction
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Zero-Knowledge Proofs: Definition

A zero-knowledge proof of knowledge (ZKPoK) provides a mechanism to demonstrate that you know the
proof of a statement (e.g. a theorem), without revealing anything beyond the fact that the statement is
true (and that you know a proof).

More formally: a zero-knowledge proof is an interactive protocol between a prover and a verifier.

& Common word (statement): x
Needs some —>| -> gets the
additional R code of the
power 110110111 | verifier!
Prover (with withess w) Verifier

A zero-knowledge proof for ‘x belongs to the language £’ must satisfy three properties:
- Correctness: if indeed x belong to £ and the prover (with w) follows the protocol, the verifier accepts.

- Soundness: if x does not belong to &, no cheating prover can cause the verifier to accept.

- Zero-knowledge: there is a simulator which, for any x in &£, can simulate (without w) the interaction



Zero-Knowledge Proofs of Knowledge: Definition

A zero-knowledge proof of knowledge (ZKPoK) solves our problem, and much more: it provides a
mechanism to demonstrate that you know the proof of a statement (e.g. a theorem), without revealing
anything beyond the fact that the statement is true (and that you know a proof).

More formally: a zero-knowledge proof is an interactive protocol between a prover and a verifier.

A Common word (statement): x

o)

Vv

Prover (with withess w) Verifier

A zero-knowledge proof for ‘x belongs to the language £’ must satisfy three properties:

- Correctness: if indeed x belong to £ and the prover (with w) follows the protocol, the verifier accepts.

- Extractability: There exists an extractor which, by rewinding the prover, can extract the witnhess

- Zero-knowledge: there is a simulator which, for any x in &£, can simulate (without w) the interaction



Example: Deploying a Cellular Network

You are a telecom company deploying a new cellular communications network. The graph below is the
network structure: nodes are radio towers, edges indicate overlaps. To avoid transmission
interferences, each tower can be configured to one of three different frequencies.

o o
o

R
(—) (v

Challenge: assigning a frequency to each tower such that no interference can occur. Some of you
might have recognized an instance of the 3-coloring graph problem.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
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Example: Deploying a Cellular Network

You are a telecom company deploying a new cellular communications network. The graph below is the
network structure: nodes are radio towers, edges indicate overlaps. To avoid transmission
interferences, each tower can be configured to one of three different frequencies.
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Challenge: assigning a frequency to each tower such that no interference can occur. Some of you
might have recognized an instance of the 3-coloring graph problem.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/2°//zero-knowledge-proofs-illustrated-primer/
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Example: Deploying a Cellular Network

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/2°//zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

e Pick an association: colors
{red,bue,purple} <-> letters {A,B,C}

e Find a coloring and commit to the
letters for each node.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/2°//zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

e Pick an edge and challenge
Google to open the nodes.

e Pick an association: colors
{red,bue,purple} <-> letters {A,B,C}

e Find a coloring and commit to the
letters for each node.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

e Pick an association: colors
{red,bue,purple} <-> letters {A,B,C}

e Pick an edge and challenge
Google to open the nodes.

e Find a coloring and commit to the
letters for each node.

e Send the opening to Alice’s query.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

e Pick an association: colors
{red,bue,purple} <-> letters {A,B,C}

e Pick an edge and challenge
Google to open the nodes.

e Find a coloring and commit to the
letters for each node.

e Send the opening to Alice’s query.

e Accept if Verify(‘letter3’,d3) = Verify(‘letter7’,d7) = 1 and
letter3 =/= letter7; otherwise, reject.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/



https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/

A Zero-Knowledge Protocol

Correctness: check It.

e Pick an association: colors
{red,bue,purple} <-> letters {A,B,C}

e Pick an edge and challenge
Google to open the nodes.

e Find a coloring and commit to the
letters for each node.

e Send the opening to Alice’s query.

e Accept if Verify(‘letter3’,d3) = Verify(‘letter7’,d7) = 1 and
letter3 =/= letter7; otherwise, reject.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/2°//zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

Zero-Knowledge

e Pick an edge and challenge
Google to open the nodes.

o Pick a random edge, commit to
two random letter in {A,B,C} for this
edge, and O for all other nodes.

e If Alice’s code return this edge,
open it, otherwise, restart.

Convince yourself that this produces a transcript indistinguishable from a honest transcript

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

Soundness: 1/|E]

e Since Google does not know a 3 -
coloring, there must exist an edge
between nodes associated to the
same letter

® Alice picks this edge with prob 1/|E]

e Google cannot open this edge to
different letters without breaking the
binding property of the commitment.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/2°//zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol

Repeat all n*|E| times

e Since Google does not know a 3 -
_—" coloring, there must exist an edge
between nodes associated to the

—  same letter

® Alice picks this edge with prob 1/|E]

e Google cannot open this edge to
different letters without breaking the
binding property of the commitment.

Example taken from a great blog post by Matthew Green:
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
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A Zero-Knowledge Protocol for any Statement

» We just gave a zero-knowledge proof system for membership to the 3-colorable language

» 3-coloring is NP-complete: any problem in NP can be transformed (in polynomial time) into an instance
of the 3-coloring problem

» This gives a zero-knowledge proof for any problem in NP: take the target NP problem, transform it into

an instance of 3-coloring (the word is mapped to a graph and the NP-withess is mapped to a 3-coloring
of the graph), and use the zero-knowledge proof to show knowledge of the witness.

Getting a zero-knowledge proof of knowledge

» We only gave a zero-knowledge proof of membership. To get a zero-knowledge proof of knowledge, we
need a property stronger than soundness: extractability.

- There are standard technigues to achieve this stronger property. Example: use an extractable
commitment (for example, a public key encryption scheme: the secret key is the extraction trapdoor).



Wrapping Up: Secure Computation against Malicious Adversaries

Honest-But Curious Protocol Malicious Protocol
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* The honest-but-curious protocol is in the broadcast model. each message is sent to everyone.

» Formalize the protocol as being a function NextMessage: NextMessage takes as input
- The input of the current player
- The random tape of the current player
- The current transcript (i.e., the list of all message received during the protocol so far)
and outputs the next message sent by the current player to all players.




Wrapping Up: Secure Computation against Malicious Adversaries

Honest-But Curious Protocol Malicious Protocol
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» Start from the honest-but-curious protocol. Let all parties use a commitment to commit to their
input and their random tape before starting the protocol.

- Each time a player sends a message in the honest-but-curious protocol, he additionally performs
a zero-knowledge proof of knowledge with all other players in the protocol, to prove the
following statement: ‘| know an input x and a random tape r such that (1) the commitments sent in
the first flow are valid commitments to x and r, and (2) the message | just send is equal to

NextMessage(x, r, transcript)



Wrapping Up: Secure Computation against Malicious Adversaries

Honest-But Curious Protocol Malicious Protocol

GMW

» Start from the honest-but-curious protocol. Let all parties use a commitment to commit to their
input and their random tape before starting the protocol.

» Each time a player sends a message in the honest-but-curious protocol, he additionally performs
a zero-knowledge proof of knowledge with all other players in the protocol, to prove the
following statement: ‘| know an input x and a random tape r such that (1) the commitments sent in
the first flow are valid commitments to x and r, and (2) the message | just send is equal to
NextMessage(x, r, transcript) => this is an NP statement with witness (x, r, randomness_commit)!



Wrapping Up: Secure Computation against Malicious Adversaries

Honest-But Curious Protocol Malicious Protocol
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» Security (intuition): the zero-knowledge proofs do not harm the semi-honest security of the
underlying protocol (proof: replace the parties by the ZK simulator). If the parties follow the
protocol, we know that it securely emulates the functionality. But if any party ever deviates from
the protocol, then by soundness of the ZK proof, he gets ‘caught’ by everyone, and the protocol
terminates (it is equivalent to leaving the protocol, which is always an option).



Wrapping Up: Secure Computation against Malicious Adversaries

Use ElGamal to
build public key
encryption with
oblivious keys

Use (e.g.) a
PRG to build a
commitment
scheme
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Bonus:

deterministic
to randomized



That’s all for today!

If you have any question after the lesson:

couteau@irif.fr
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