Secure Computation

In this course, we will Introduce secure computation, an active

research area Iin cryptography that aims at protecting private data
even when they are used in computations.

The slides for the course will be online after the course. | encourage
you to take notes and try to solve the exercises which will come up

during the session. If you have any question after the course, don’t
hesitate to mail me (address below)

Geoftfroy Couteau
couteau@irif.fr
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Classical cryptography: protecting communications.
However, data are not only exchanged: they are often
used in computations.
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Classical cryptography: protecting communications.
However, data are not only exchanged: they are often
used in computations.

Is it possible to protect data privacy even when it’s used in computations?



Secure Computation - Examples

Scenarios
Study of

medication effect

Hospitals hold private data of cancer patients.
Access to this data would benefit to cancer
research (statistics, machine learning to develop
treatments, etc). The data can legally and morally
not be shared.

TEE

We want two properties: Model (more on that later):
® Correctness: everyone learns the result of the ® Point-to-point secure, authenticated network
computation ® Polytime, probabilistic, interactive algorithms

® Privacy: nothing more than the result is learned ®
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Scenarios
Study of

medication effect

Hospitals hold private data of cancer patients.
Access to this data would benefit to cancer
research (statistics, machine learning to develop
treatments, etc). The data can legally and morally

not be shared.

We want two properties: Model (more on that later):
® Correctness: everyone learns the result of the ® Point-to-point secure, authenticated network
computation ® Polytime, probabilistic, interactive algorithms
® Privacy: nothing more than the result is learned ® An adversary can corrupt (control) a

subset of the parties
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.‘

E-voting

Tax-fraud detection

fad

Contact tracing Studies

_ Secure computatlon
Auctions




Warm-up Exercise
The problem

® Five players with respective inputs
128
T1,T2, " ,T5 € {071}

® Goal: computing the bitwise-XOR (denoted &)
of all inputs: 1 @ x2 @ T3 D T4 D T5

Assumption: the players behave honestly. They can
interact through secure and authenticated channels.
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® GVS generates a random 128-bit string /X and sendstO Q

This should look familiar: it’s a one-time pad!
Hence, it leaks no information about I'.
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Warm-up Exercise
The problem

® Five players with respective inputs
12
T1,T2, " ,T5 € {071} °

® Goal: computing the bitwise-XOR (denoted &)
of all inputs: 1 @ x2 @ T3 D T4 D T5

Assumption: the players behave honestly. They can
interact through secure and authenticated channels.

Solution
o
‘§ generates a random 128-bit string /' and sends 1 © K to Q

Q computes and sends (x1 P K) D xo = (21 D x2) B K to ﬁ
and so on... Until ‘% gets back (z1 @ x2 @ z3 D xy @ z5) B K |, removes K, and sends the result.
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® Goal: computing the bitwise-XOR (denoted &)
& 7, o ()@z&ﬁ of all inputs: 1 @ T2 @ T3 © T4 D T5
v 4 @V s
T
R interact through secure and authenticated channels.
Security

If the adversary corrupts a single party, we are fine: it sees only something masked with K



Warm-up Exercise

The problem @
® Five players with respective inputs

¢ J
T1,T2, " ,T5 € {07 1}128

® Goal: computing the bitwise-XOR (denoted &)
of all inputs: 1 @ x2 @ T3 D T4 D T5

Assumption: the players behave honestly. They can
interact through secure and authenticated channels.

Security

If the adversary corrupts a single party, we are fine: it sees only something masked with K

In case of two corruptions, we are in trouble: the adversary can learn Kl



The Model

Real World

o
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Goal

® Public function f
® All players want to get f(x1, 72, 23,74, 5)
® No player should learn anything more



The Model

Real World

- [
1. The broadcast (or blackboard) network
z —

Each party with message m can write it on a

é public blackboard. Everyone can see what is
written on the board. All messages are
v authenticated.
L1
L2
Network model

® Fully authenticated network (with signatures)

® [wo communication models



The Model

Real World

1. The broadcast (or blackboard) network

Each party with message m can write it on a
public blackboard. Everyone can see what is
written on the board. All messages are
authenticated.

2. The point-to-point network

All parties are connected through a complete

Network model point-to-point network. Each channel is
perfectly authenticated and private.

® Fully authenticated network (with signatures)

® [wo communication models



The Model

Real World

Adversarial model

® An adversary can corrupt a subset of the players

The adversary sees everything a corrupted player sees:
its private input, and all messages it sends or receive.



The Model

Real World

@ 1. Honest-but-curious corruption

The corrupted parties follow the specification of
the protocol. The adversary is passive: he tries
to retrieve private information by observing the
transcript.

2. Malicious corruption

The adversary fully control the corrupted
Adversarial model parties, and can make them behave arbitrarily in
the protocol.

® An adversary can corrupt a subset of the players
® [wo standard corruption models
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Real World

@ 1. Honest majority

The adversary can simultaneously corrupt only
a strict minority of the players.

2. Dishonest majority

The adversary can corrupt all-but-one players.
Adversarial model
® An adversary can corrupt a subset of the players
® [wo standard corruption models
® [wo standard corruption levels
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® [wo standard corruption models
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Computational Indistinguishability

You should be familiar with the notion of computational indistinguishability.
If you are not, please say so!

Quick recap: Do = {Doabren Di={Dia}ren (N ENVA>N -]

: Do =~ D; <— VPPTA,V large enough A € N,
(Support = {0,1} A

(Probabilistic polynomial time Turing machine]

| Prjx <~ Dgx : A(x) =1] — Prjx <~ D;.x : A(x) = 1]| = negl(\)

/

(Vc € N,V large enough A € N, negl()\) < 1/)\Cj




The Model - Defining Security

Computational Indistinguishability - Example

(G, g,p) < GroupGen(1")

{(9,9°,9°) | (a,b) « Z2} =~ {(9%, 9", 9°) | (a,b,¢) + Z)}

(this is the Decisional Diffie-Hellman assumption)



The Model - Defining Security

Real World

Real Behavior

® Players interact through [network model]
® Some players are corrupted in [corruption model]
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Real World ldeal World

i @
/.

B
@ R

Real Behavior Ideal Behavior

| | through perfectly secure authenticated channels
® Some players are corrupted in [corruption model]
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Real World

Real Behavior

® Players interact through [network model]
® Some players are corrupted in [corruption model]

ldeal World

ﬂ Allowed leakage

/NN

ZCl, L2, L3,L4, 5175

2 s

Ideal Behavior

® All parties send their input to a trusted party F
through perfectly secure authenticated channels

® F computes the output and reveals the result

® [he adversary only gets some allowed leakage
(+ input/output of corrupted parties)
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Real World ldeal World

ﬂ Allowed leakage

<= /YN

ZCl, L2, L3,L4, 5175

: Y rposs

Simulation

Core idea: we construct a simulator which fools the adversary into believing he is playing the real world
protocol, while making him effectively play the ideal world protocol. Then, we prove that no adversary
can distinguish the simulated protocol from the real protocol.
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Real World ldeal World

ﬂ Allowed leakage

<= /YN

2171, L2y, X3, L4, .Cl?5

: Y rposs

Simulation

Core idea: we construct a simulator which fools the adversary into believing he is playing the real world

protocol, while making him effectively play the ideal world protocol. Then, we prove that no adversary
can distinguish the simulated protocol from the real protocol.

Take the time to convince yourself that this guarantees that the real protocol is as secure as the
ideal functionality. If you cannot convince yourself, please ask.
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Real World ldeal World

ﬂ Allowed leakage

<= /YN

ZCl, L2, L3,L4, 5175

R %S

Core idea: we construct a simulator which fools the adversary into believing he is playing the real world
protocol, while making him effectively play the ideal world protocol. Then, we prove that no adversary
can distinguish the simulated protocol from the real protocol.

|

W emulates the honest parties in the real world, and the adversary in the ideal world.

Simulation
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Real World ldeal World

Allowed leakage

In the sense of
computational

Simulation

Core idea: we ruct a simulator which fools the adversary into believing he is playing the real world
protocol, wh#€ making him effectively play the ideal world protocol. Then, we prove that no adversary
can distinguish the simulated protocol from the real protocol.

|

W emulates the honest parties in the real world, and the adversary in the ideal world.



The Model - Defining Security

Real World ldeal World

Allowed leakage

In the sense of
computational

Simulation

Core idea: we ruct a simulator which fools the adversary into believing he is playing the real world
protocol, wh#€ making him effectively play the ideal world protocol. Then, we prove that no adversary
can distinguish the simulated protocol from the real protocol.

The distributions of the adversary’s view In the real world and in the simulated world are
computationally indistinguishable



Exercise 2

Same Output

Model: all parties receive the same output

Independent Outputs

We can also consider a more general model,
where each party gets a specific output (this
also captures the case where not all parties
should get the output).
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Same Output

Model: all parties receive the same output

Independent Outputs

We can also consider a more general model,
where each party gets a specific output (this
also captures the case where not all parties
should get the output).




Exercise 2 - Solution

Suppose that for all functionality f : X1 X X2 x X3 x Xy x X5 — {0,1}", there is a secure protocol
where all parties get the same output. Let (z1, %2, 3,74, 75) be the parties’ inputs, and let
(f1, f2, f3, f1, f5) be the functions computing the independent outputs each party wants.



Exercise 2 - Solution

Suppose that for all functionality f : X1 X X2 x X3 x Xy x X5 — {0,1}", there is a secure protocol
where all parties get the same output. Let (z1, %2, 3,74, 75) be the parties’ inputs, and let
(f1, f2, f3, f1, f5) be the functions computing the independent outputs each party wants.

Define the following single output 5-party functionality F’ which securely computes:

f, : ((331,7“1),"’ ,($5,T5)) — (Tl @fl(l'l,"‘ 7565)7'” » I'5 @f5($17”° 75175))

Reduction: each party with input ; picks a uniformly random 7°; . All parties emulate F’.
Security: follows from the fact that 7; perfectly masks f (T, -+ ,T5).

f/(ylv Y2,Y3, Ya, y5)

ﬁ Q Yi < (T4, 74)

=

JA
ee
v

A4
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Exercise 2 - Solution
Real World |deal World

f5$1 '

- f2 L1y
W Wsees fa(x1,---

|y1y2y3y4y5
JA
'

Yi < (z;,7;)




Exercise 2 - Solution

Real World ldeal World
Nothing to emulate? The adversary sees
nothing of what the emulated parties send... = fo(@y, -, @)
sees f4 5171, 7375)
f5 L1,y 7335)

' (y1, 92,93, Y4, Ys) \

i < (x;,7;)
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Exercise 2 - Solution

Real World ldeal World
Different scenario: there is also a functionality £, 75)
in the real world! We call this « hybrid world ». = T
sees f4 5171, 7375)
-> The simulator emulates F’. W fs(x1,- -+, x5)

|

' (y1, 92,93, Y4, Ys) \

Yi < (937;,7“@')

Output: (random, f2(z1, -+ ,25), random, ...)




Simple Example: Secure Communication
Real World ldeal World

@ | j
-~ K- H &
Y =
v L1 X1
L1 A
2 2 a
\ 4
Real Behavior Ideal Behavior
® Blackboard model (public communication) ® The sender sends his input to F

® No corruption (but the adversary sees the board) ® F sends it to the receiver; no leakage.



Simple Example: Secure Communication
Real World ldeal World

- ® o
TN D N
) to do that?

& o

Real Behavior Ideal Behavior

® Blackboard model (public communication) ® The sender sends his input to F
® No corruption (but the adversary sees the board) ® F sends it to the receiver; no leakage.



Simple Example: Secure Communication

Real World =~ IND-CPA sooura ldeal World

encryption scheme. -
Sender message: input ﬂ 0 @
—_—
public key of the / \
: L1 L1
receiver.
A
= G
A4

encrypted with the

Real Behavior Ideal Behavior

® Blackboard model (public communication) ® The sender sends his input to F
® No corruption (but the adversary sees the board) ® F sends it to the receiver; no leakage.



Simple Example: Secure Communication
Real World ldeal World

| /ﬂ\@—@
Y - 2

Simulation
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Real World ldeal World
- _ FE(xq)

. o e
a8 ‘t@? /X
& v 2

Real Behavior Simulation Ideal Behavior

|

Simulating Q IS easy: %7 generates a public key a honestly.



Simple Example: Secure Communication
Real World ldeal World

/-\ = -
=Y % /N
& G

Real Behavior Simulation Ideal Behavior

i

o

Simulating Q is easy: W generates a public key a honestly.
Simulating @ IS harder, since W does not know X'1.

What does the simulator write on the board?



Simple Example: Secure Communication

Real World ldeal World
-, - -
W y—y

o

s F &V \1“

&

Real Behavior Simulation Ideal Behavior

Simulating Q is easy: W generates a public key a honestly.
Simulating @ IS harder, since W does not know X'1.

Solutlon encrypt an arbitrary value instead!
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Simulation Reality

o E(0) o
- g ~ o

6 & b

7 E(x1) ~
=

Simulation

Simulating Q is easy: W generates a public key a honestly.
Simulating @ IS harder, since W does not know X'1.

Solutlon encrypt an arbitrary value instead!
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Simulation Reality

Simulation

Simulating Q is easy: W generates a public key a honestly.
Simulating @ IS harder, since W does not know X'1.

Solutlon encrypt an arbitrary value instead!



Simple Example: Secure Communication

Simulation Reality

Distinguishing the two cases

Z \
< >
\ /

Breaking the IND-CPA of E

Simulation

Simulating Q is easy: W generates a public key a honestly.
Simulating @ IS harder, since W does not know X'1.

Solutlon encrypt an arbitrary value instead!



Simple Example: Secure Communication
Real World ldeal World

] - N i &
Fr~ S
&

o

PN &7 \Q

Simulation

The simulation is indistinguishable from the real protocol if E is IND-CPA secure, hence the protocol
securely emulates the ideal functionality F under the assumption that E is IND-CPA secure.



Simple Example: Secure Communication
Real World ldeal World

® p. o

e
§ T Y[
& - R

Simulation
View: B , £E(0) == View: B , E(z1)

A Cannot work: the plaintexts do not have the same size!



Simple Example: Secure Communication

Real World ldeal World

length (z:1) @
/ \

Solution:

- - Allow this leakage
o
v =

o

&

Simulation

View: B , E(0) =X View: B , E(z1)

A Cannot work: the plaintexts do not have the same size!



Simple Example: Secure Communication

Real World |deal World
Solution:
- - Allow this leakage ength(s ~
> 7 D - Emulate the ideal 1) W

adversary

Y

o

/ \

&

Simulation
View: B , £E(0) == View: B , E(z1)

A Cannot work: the plaintexts do not have the same size!



Simple Example: Secure Communication

Real World |deal World
Solution:
- - Allow this leakage ength(s ~
> 7 D - Emulate the ideal 5 1) W

adversary

- Use E(0...0) / \

Y

o

@ length(z1) zeroes

Simulation

view: @ . £(0---0) A2 View: @, E(z1)

é Problem solved



Simple Example Il: Oblivious Transfer

Goal:

» The receiver learns S

» The sender learns nothing about b

- The receiver learns nothing about S1_¢p

Sender Receiver

(SQ, 81) Selection bit b



Simple Example Il: Oblivious Transfer

« | want to get A »

Recelver

Sender

A (minimalistic) version of symmetrically private download from a database
held by a server: the client wants to retrieve an item (but does not want to
reveal which one), and the server wants to keep all other items private.



Simple Example II: Oblivious Transfer

80781

Sender Receiver
(SQ, 81) Selection bit b




Simple Example Il: Oblivious Transfer

b
ﬁ
Sb
—_—

Sender Receiver
(SQ, 81) We wiill: Selection bit b

* Provide a full construction of OT, starting from an IND-CPA
encryption scheme satisfying additional special properties

» Formally prove that the construction is secure.

The following closely follows the lecture notes of Jonathan Kat:

https://www.cs.umd.edu/~jkatz/gradcrypto2/f13/lecture3.pdf



https://www.cs.umd.edu/~jkatz/gradcrypto2/f13/lecture3.pdf

Simple Example Il: Oblivious Transfer

Reminder:

A public key encryption scheme &£ consists of three probabilistic polynomial time algorithms
(Gen, Enc, Dec) where

e Gen is the key generation algorithm that on input 1", where n is the security param-
eter, outputs the public key pk and the secret key sk,

e Enc is the encryption algorithm that on input a message m and the public key pk
outputs a ciphertext ¢ <— Encpi(m),

e Dec is the decryption algorithm that on input a ciphertext ¢ and secret key sk outputs
the message m = Decg(c).



Simple Example |I: Oblivious Transfer

Standard (though you might have seen another - equivalent - formulation)

Definition 1|{CPA security| Let X, (m) = {(pk, sk) < Gen(1") : (pk,Encyx(m))} and

Y, (m) e {(pk, sk) < Gen(1™) : (pk,Enc,:(0™))} for every m in the message space. A

public key encryption scheme is secure against chosen plaintext attacks (CPA-secure) if the
ensembles {X,,} and {Y,,} are computationally indistinguishable. O

For the security of the OT protocol, we also require that the encryption scheme have
obliviously sampleable public keys. An encryption scheme £& = (Gen, Enc, Dec) has oblivi-
ously sampleable public keys if

e there exists a polynomial time algorithm Samp such that {Samp(1™)} is identically
distributed to {(pk, sk) < Gen(1") : pk}

e there exists a polynomial time algorithm pkSim such that {r < {0,1}"; pk = Samp(1™;r) :
(pk,7r)} and {(pk, sk) < Gen(1™);r < pkSim(pk) : (pk,r))} are computationally in-
distinguishable.

New
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Simple Example |I: Oblivious Transfer

Standard (though you might have seen another - equivalent - formulation)

Definition 1|CPA security| Let X, (m) = {(pk, sk) < Gen(1"™) : (pk,Encyr(m))} and

Y,(m) e {(pk, sk) < Gen(1™) : (pk,Enc,:(0™))} for every m in the message space. A

public key encryption scheme is secure against chosen plaintext attacks (CPA-secure) if the
ensembles {X,,} and {Y,,} are computationally indistinguishable. O

For the security of the OT protocol, we also require that the encryption scheme have
obliviously sampleable public keys. An encryption scheme £& = (Gen, Enc, Dec) has oblivi-

ously sampleable public keys if

e there exists a polynomial time algorithm pkSim such that {r < {0,1}"; pk = Samp(1™;r) :
(pk,7r)} and {(pk, sk) < Gen(1™);r < pkSim(pk) : (pk,r))} are computationally in-
distinguishable. (This makes it non-trivial)

New



Simple Example Il: Oblivious Transfer

OT Protocol

Sender(xq, x1) Receiver(b)

(pk, sk) < Gen(1"™)

é pk’ < Samp(1™)
A4

pky, = pk, pk,_, = pk’'

pko, Pkq
co = Encyy, (20),c1 = Encpi (1) ﬁ
Co, C1

—P—

Ty = Decskb (Cb)



Simple Example Il: Oblivious Transfer

OT Protocol

Sender(zg,z1) |[Only knowns the secret Receiver(b)
key for one of these keys

(pk, sk) < Gen(1"™)
pk’ < Samp(1"™)
pky = pk, pky_y = pk’

Pkoapkl

Co, C1




Simple Example Il: Oblivious Transfer

OT Protocol

Sender(zg,z1) |[Only knowns the secret Receiver(b)
key for one of these keys

(pk, sk) < Gen(1"™)
pk’ < Samp(1"™)
pky = pk, pky_, = pk’
- Pk, pkq
€0, C1 ﬁ

Ty = Decskb (Cb)
Can only decrypt one




Oblivious Transfer - Security Analysis

Security Against the Sender
S(1",zg,x1):

1. Run (pkg, skg) < Gen(1™) and (pk,, sk1) < Gen(1"™)
2. Choose randomness rg,r1 for the two encryptions.

3. OUtPUt (pk(b pkh ro, 71, X0, 'Tl)‘

View”™

sender(1n7a707$1):

1. The sender receives (pky, skp) < Gen(1™) and pk,_, < Samp(1"),
2. the randomness rg, r; for the two encryptions.

3. Hence, the sender’s view consists of (pk,, pkq,70,71,%0,Z1)-



Oblivious Transfer - Security Analysis

Security Against the Sender
S(1",zg,x1):

1. Run (pkg, skg) < Gen(1™) and (pk,, sk1) < Gen(1"™)
2. Choose randomness rg,r1 for the two encryptions.

3. OUtPUt (pk(b pkh ro, 71, X0, 'Tl)‘

s

sender(1n7a707$1):

View

N\
N\

1. The sender receives (pk;, skp) < Gen(1™) and pk,_;, < Samp(1"),

2. the randomness rg, r; for the two encryptions.

3. Hence, the sender’s view consists of (pk,, pkq,70,71,%0,Z1)-

Samp(1™) and Gen(1") are identically distributed.



Oblivious Transfer - Security Analysis

Security Against the Receiver

S(ln, b, CIJb):

1. Choose randomness rge, and compute (pk,, skp) < Gen(1™).

2. Run (pk,_y, sk1—p) < Gen(1") and compute rgamp — pkSim(pk,_p).
3. Set ¢, < Encpy, (7p) and c1—p < Encpi, , (0™).

4. Output (rGen, "Samp; €0, C1, b, Tb).

View!, (1™, b):

recelver

1. The receiver chooses randomness rGen, "'Samp and computes (pky, skp) < Gen(1";7Gen)
and pk,_p <= Samp(1™; rsamp)-

2. The receiver receives ¢, = Encyg, (7p),c1—p = Encpr, , (c1-5).

3. Hence, the receiver’s view consists of (7Gen,”Samp; €0, C1)-



Oblivious Transfer - Security Analysis

Security Against the Receiver

S(ln, b, CIJb):

1. Choose randomness rge, and compute (pk,, skp) < Gen(1™).

2. Run (pk,_y, sk1—p) < Gen(1") and compute rgamp — pkSim(pk,_p).
3. Set ¢, < Encpy, (7p) and c1—p < Encpi, , (0™).

4. Output (rGen, "Samp; €0, C1, b, Tb).

View!, (1™, b):

recelver

X

1. The receiver chooses randomness rGen, "'Samp and computes (pky, skp) < Gen(1";7Gen)
and pk,_p <= Samp(1™; rsamp)-

2. The receiver receives ¢, = Encyg, (7p),c1—p = Encpr, , (c1-5).

3. Hence, the receiver’s view consists of (7Gen,”Samp; €0, C1)-



Oblivious Transfer - Security Analysis

Security Against the Receiver

Hybrid(1™, b):

1. Choose randomness rgen and compute (pky, skp) < Gen(1™; 7Gen)-
2. Compute pki_; < Gen(1") and run pkSim to obtain rsamp < pkSim(pki_p).
3. Receive ciphertexts ¢, = Ency, (T5), c1—5 = Encpy, , (c1-3).

4. OutPUt (TGena F'Samp €0, Cl) ~

By definition of the algorithm pkSim, the distributions View’, .. ..(1", b) and Hybrid(1", b)
are identical. For distributions Hybrid(1™,b) and S(1%, b, x3), the difference is that we re-
placed the encryption of x1_; with that of 0. The proof that these two distributions
are computationally indistinguishable follows by reduction from the CPA security of the

encryption scheme.



Home Exercise

Prove that ElIGamal satisfies the obliviously samplable keys requirement
Reminder:

e there exists a polynomial time algorithm Samp such that {Samp(1™)} is identically
distributed to {(pk, sk) < Gen(1") : pk} !

e there exists a polynomial time algorithm pkSim such that {r < {0,1}"; pk = Samp(1™;7) :
(pk,r)} and {(pk, sk) < Gen(1™);r < pkSim(pk) : (pk,r))} are computationally in-
distinguishable.



Two-Party Secure Computation for All Functions

Until nhow, we only addressed special cases of secure computation, for very
specific, restricted (two party) functionalities: secure communication and

oblivious transfer.

However, a beautiful result of Yao, from 1986, showed that the existence of

(private-key) encryption schemes, together with a protocol for oblivious
transfer, as we just constructed, suffices to securely compute all functions in

the two-party setting.

In the following, we will prove this result.



Two-Party Secure Computation for All Functions

O 17

5 3

Goal: f(x,y)

Idea: represent f as a boolean circuit




Building Block |: Boolean Circuits

Claim: any polytime-computable function can be computed by a poly size boolean
circuit over the {XOR, AND} bases.

Proof: that’s how your computer does it.

Gy Pole) (w) Gy s (e
& 2 & oo
o o

e



Building Block |: Boolean Circuits

Idea: « encrypting » the gates such that they can only be evaluated given appropriate
keys, and while hiding their exact behavior.

Gy Pole) (w) Gy s (e
& 2 & oo
o o

e



Building Block Il: Symmetric Encryption

We let (KeyGen, Enc, Dec) be a symmetric encryption scheme with the following
properties:

« KeyGen generates a key K

 Encg(m) — c generates a random encryption of the plaintext m

e Decg(c) returns m if c = Encg(m)

A decryption of a ciphertext ¢ with a wrong key K’ returns « error » (hence, it reveals
that a wrong key was used)



Building Block Il: Symmetric Encryption

We let (KeyGen, Enc,Dec) be a symmetric encryption scheme with the following
properties:

« KeyGen generates a key K

 Encg(m) — c generates a random encryption of the plaintext m

e Decg(c) returns m if c = Encg(m)

A decryption of a ciphertext ¢ with a wrong key K’ returns « error » (hence, it reveals
that a wrong key was used)



Building Block Il: Symmetric Encryption

We will use this encryption scheme to « encrypt » logical gates.

A Y

Z=XAY



Building Block Il: Symmetric Encryption

The inputs and outputs are bits, but we will « represent » them using random keys,

to hide thelr true value:
X
- Y~
10,1} 10,1}

10,1}
Z=XAY «—



Building Block Il: Symmetric Encryption

The inputs and outputs are bits, but we will « represent » them using random keys,

to hide their true value:
X
(KO K" (K),K,}

KV K!
Z=xAy«//{“Z}



Building Block Il: Symmetric Encryption

The inputs and outputs are bits, but we will « represent » them using random keys,

P Y~
(KY,K!} (K),K,}

To stay consistant, here we need:
Kx/\y
4

to hide their true value:

K, K]
Z=XAY — ok



Building Block Il: Symmetric Encryption

The inputs and outputs are bits, but we will « represent » them using random keys,

to hide their true value:
/ A

0 g1 0 g1
{Kx9Kx} {K’Ky}
EnCK)(C)(EnCKQ(KZO))
Key idea: double encryption! If you 0
have exactly the right input keys, you EnCKQ(EnCKyI(KZ ) (Shuffled)

learn the right output key, and 0
nothing more. Encki(Encko(K;))

EnCK%(EnCKyl(KZI))



Building Block lll: Oblivious Transfer

Sender Receiver
(SQ, 81) Selection bit b



Garbled Circuits

Idea: « encrypting » the gates such that they can only be evaluated given appropriate
keys, and while hiding their exact behavior.

TN RAB D S
4 (Ko Fio (Fics(0))

AnD Fic (Fig(1)

Fr:(Fk:(1))

Fi,(Fk:(0))




Garbled Circuits

K0 K0 KO KO KO KO KO KO
K1 K1 K1 K1 K1 Kl Kl
X1 X2

N\

KO N\~
K @ (. 4, % RQ\ L ( \
) Ko Fro(Fi:(0))

AND Fr (Fir (1))

Fr:(Fk:(1))




Garbled Circuits

K2 K2 K2 K2 K2 K K2 KD
K} KL Kl K. K. KL K. K.
X1 Xo X3 X5 X6 X7

FKQI (FK,?Z(KQ)) KO
FK;}I(FKQz(K%)) K)i
FKo(FK(;(O))
| FK1(FK6(1))
Fry(Fk:(1))




Two-Party Secure Computation for All
Functions

It remains to find a way to transmit exactly the appropriate input keys (and nothing more)



Garbled Circuits

K) K <2
K1 @@ KL KL KL
) Pe)s) () () (s @

Fro (Fke (KY)) KO
FK;}I (FK,?2 (Ki)) Kl
X ~ )
Fro (Fkz (K)) Fio (Fij (0))
) Fia (Fig(1))
Fry(Fk:(1))

D = sender inputs = 0101 D = receiver inputs = 1100



Garbled Circuits

K K K
l!!!!!' Ilﬁigglllﬁi!!' Iiiéll !!!!El ‘k(lé 1k(i7 lIII!![
W Pl Wy ey

Fro (Fxo (K )

KO
Frr (Fko, (K1) pi
FKo (FK1 (Kl)) ) (FKO(FK(;(O))\
| 0 | FK1(FK6(1))
Fry(Fk:(1))

D . send directly



Garbled Circuits

K) K <2
K1 @@ KL KL KL
) Pe)s) () () (s @

Fro (Fke (KY)) KO
FK;}I (FK,?2 (Ki)) Kl
X ~ )
Fro (Fkz (K)) Fio (Fij (0))
) Fia (Fig(1))
Fry(Fk:(1))

D . send directly D . use oblivious transfer



Two-Party Secure Computation for All
Functions




Two-Party Secure Computation for All
Functions




That’s all for today!

If you have any question after the lesson:

couteau@irif.fr
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