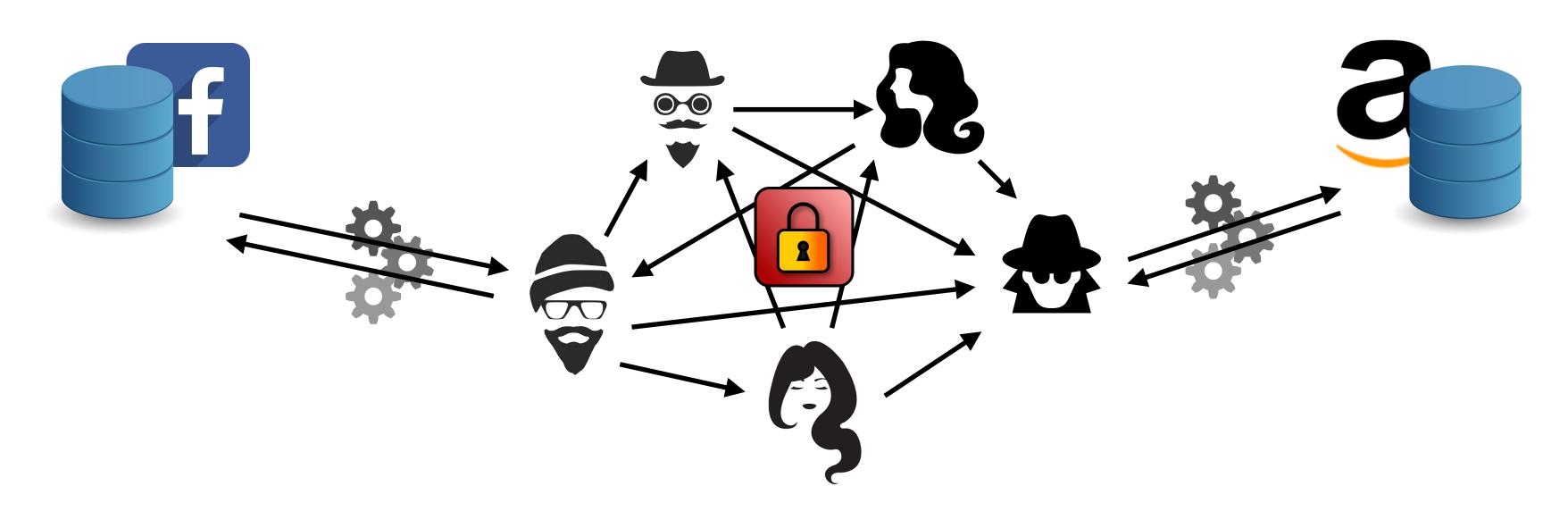
Secure Computation

In this course, we will introduce secure computation, an active research area in cryptography that aims at protecting private data even when they are used in computations.

The slides for the course will be online after the course. I encourage you to take notes and try to solve the exercises which will come up during the session. If you have any question after the course, don't hesitate to mail me (address below)

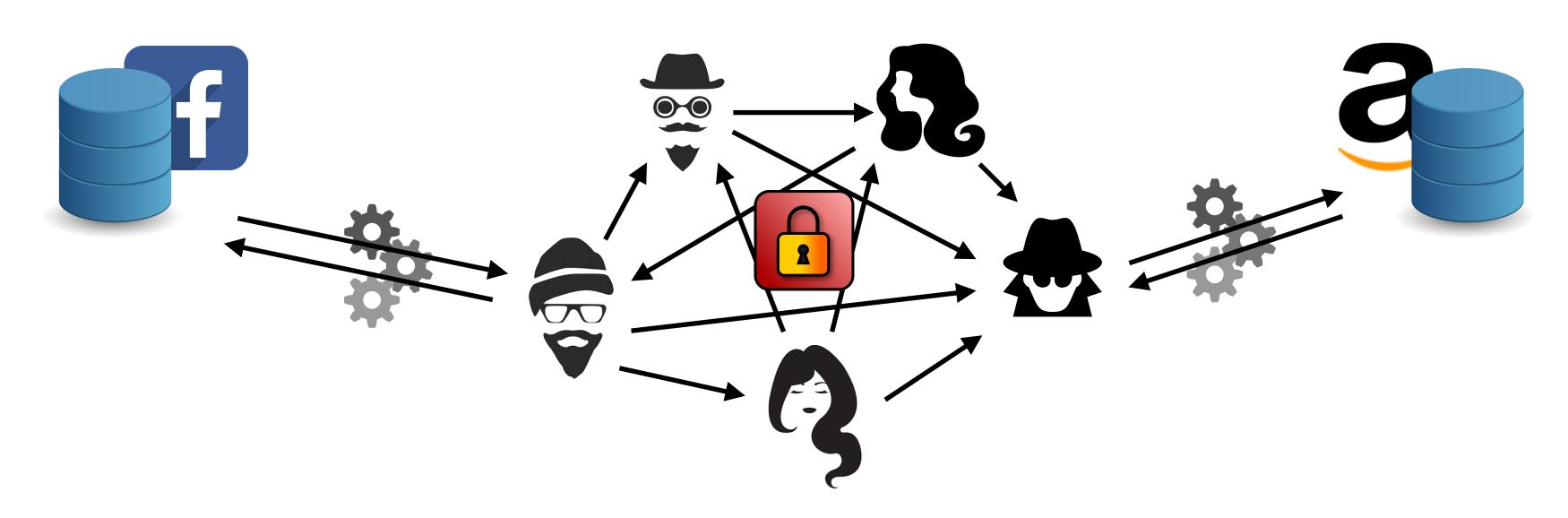
Geoffroy Couteau couteau@irif.fr

Secure Computation



Classical cryptography: protecting communications. However, data are not only *exchanged*: they are often *used in computations*.

Secure Computation



Classical cryptography: protecting communications. However, data are not only *exchanged*: they are often *used in computations*.

Is it possible to protect data privacy even when it's used in computations?

Secure Computation - Examples

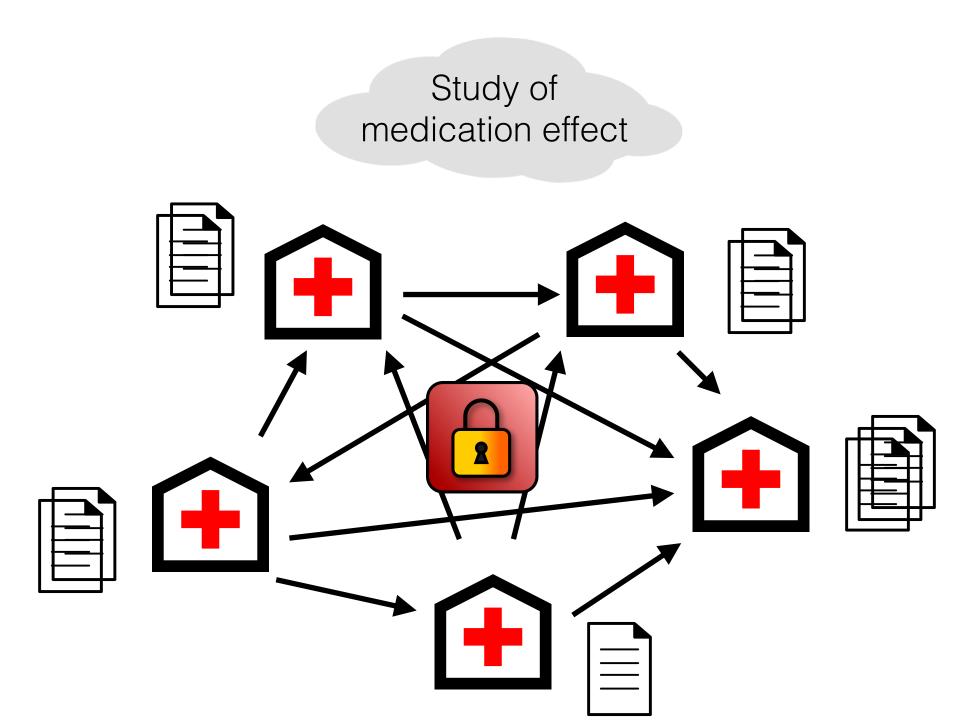
Scenarios

Hospitals hold private data of cancer patients. Access to this data would benefit to cancer research (statistics, machine learning to develop treatments, etc). The data can legally and morally not be shared.

Is it possible to compute statistics on the joint data held by hospitals, without seeing the data?

We want two properties:

- Correctness: everyone learns the result of the computation
- Privacy: nothing more than the result is learned



Model (more on that later):

- Point-to-point secure, authenticated network
- Polytime, probabilistic, interactive algorithms

Secure Computation - Examples

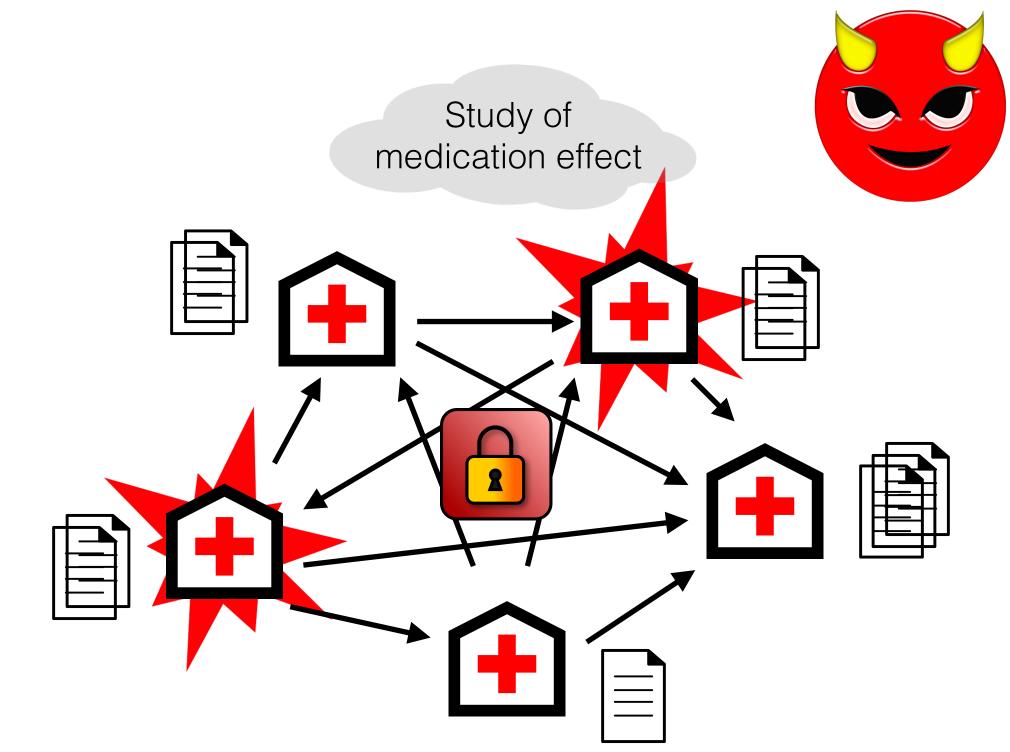
Scenarios

Hospitals hold private data of cancer patients. Access to this data would benefit to cancer research (statistics, machine learning to develop treatments, etc). The data can legally and morally not be shared.

Is it possible to compute statistics on the joint data held by hospitals, without seeing the data?

We want two properties:

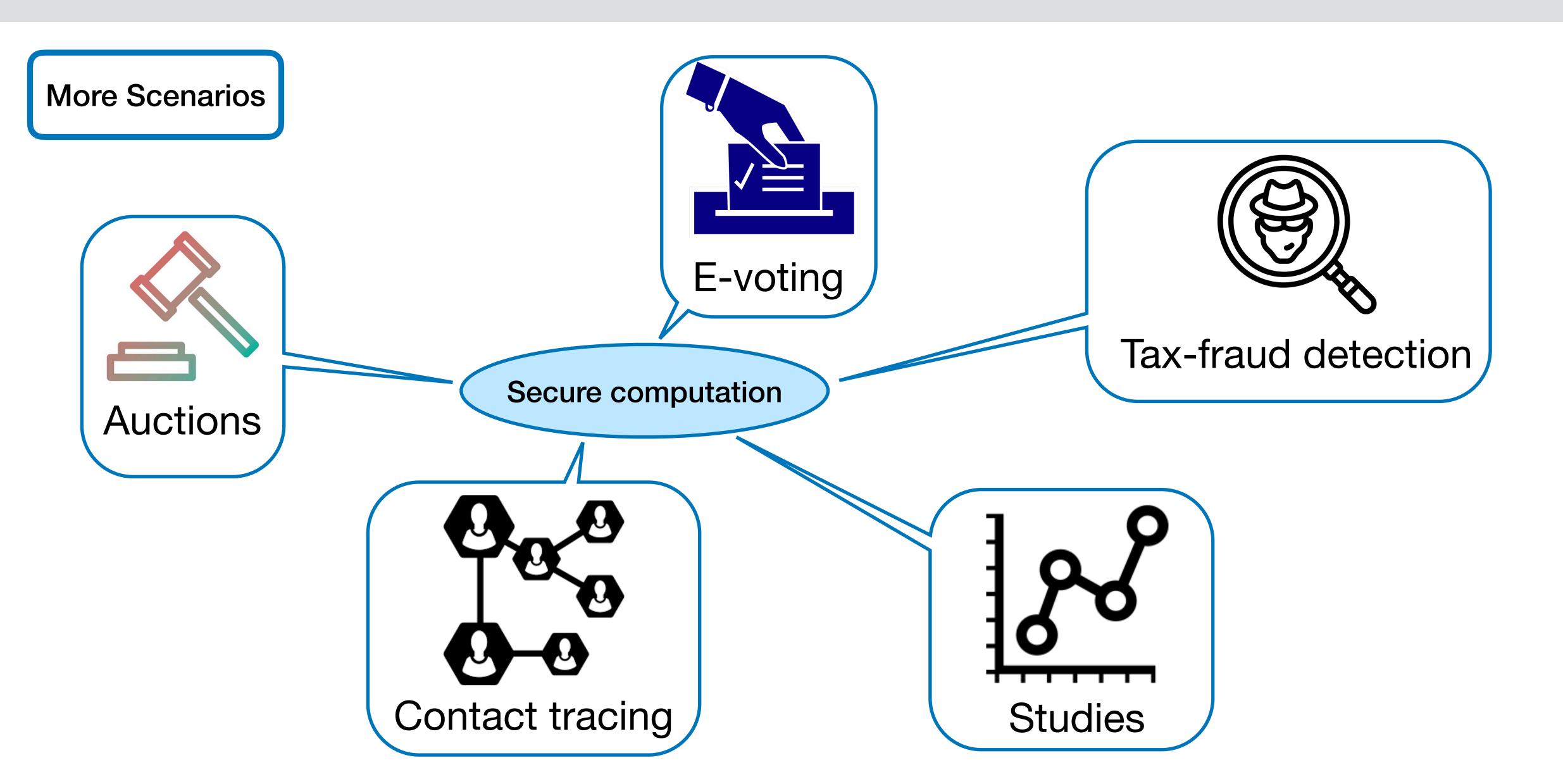
- Correctness: everyone learns the result of the computation
- Privacy: nothing more than the result is learned



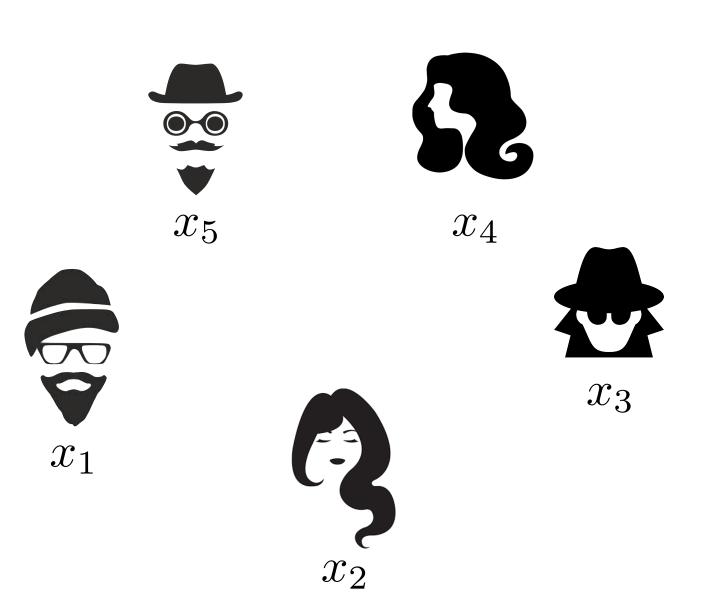
Model (more on that later):

- Point-to-point secure, authenticated network
- Polytime, probabilistic, interactive algorithms
- An adversary can corrupt (control) a subset of the parties

Secure Computation - Examples



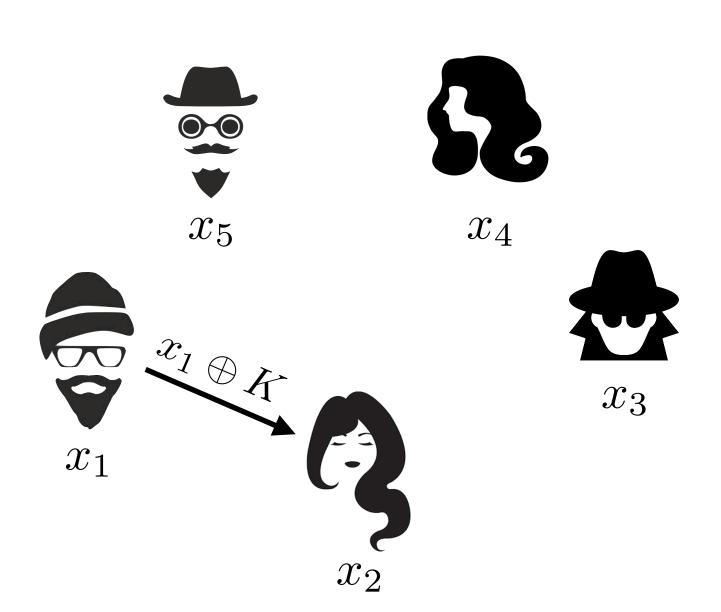
The problem



- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted \oplus) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

Assumption: the players behave honestly. They can interact through secure and authenticated channels.

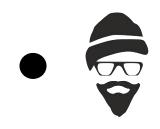
The problem



- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted \oplus) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

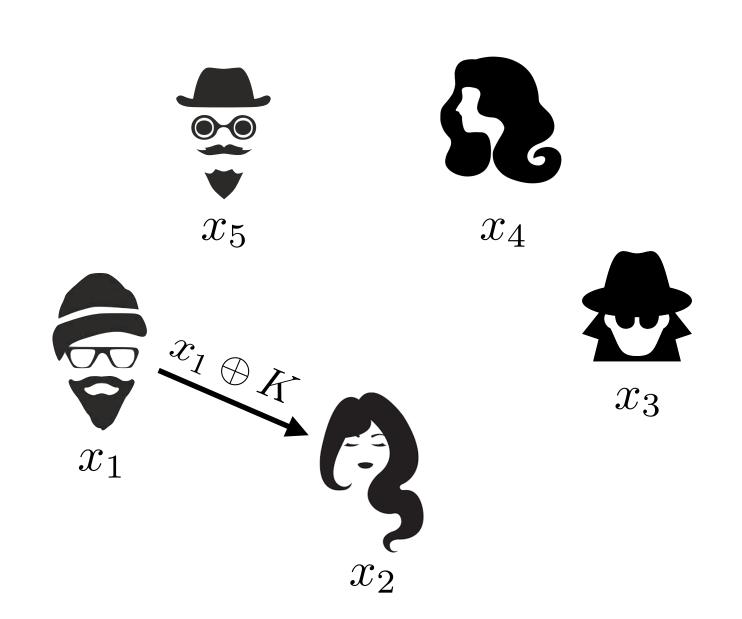
Assumption: the players behave honestly. They can interact through secure and authenticated channels.

Solution



generates a random 128-bit string K and sends $x_1 \oplus K$ to

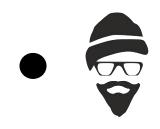
The problem



- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted +) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

Assumption: the players behave honestly. They can interact through secure and authenticated channels.

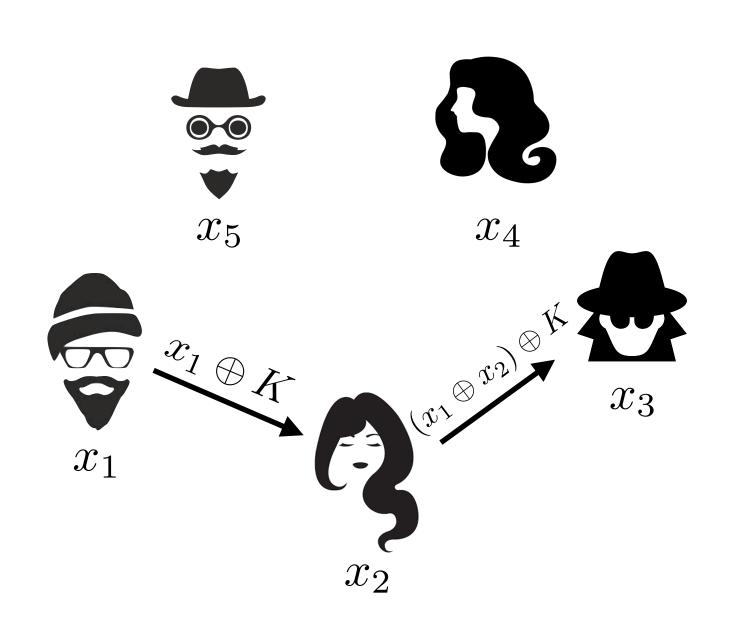
Solution



generates a random 128-bit string K and sends $x_1 \oplus K$ to ${\mathfrak C}$

This should look familiar: it's a one-time pad! Hence, it leaks no information about x_1 .

The problem



- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted \oplus) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

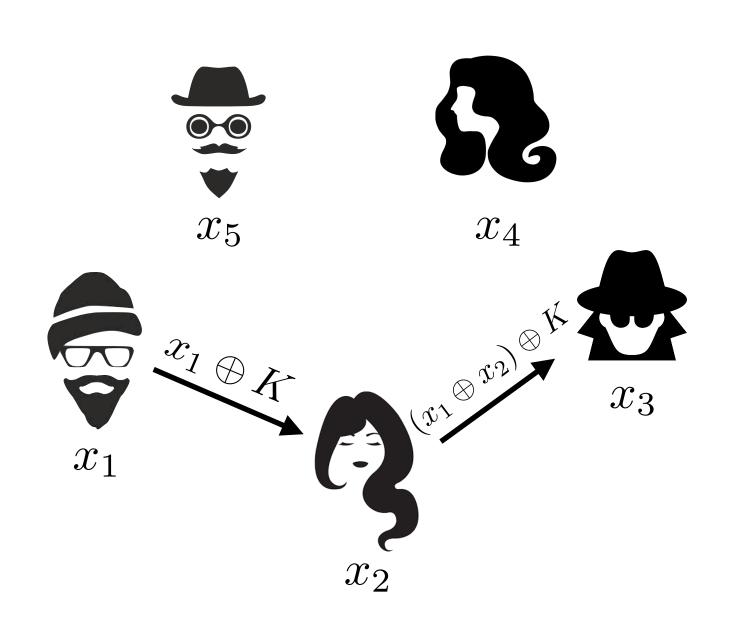
Assumption: the players behave honestly. They can interact through secure and authenticated channels.

Solution

generates a random 128-bit string K and sends $x_1 \oplus K$ to

computes and sends $(x_1 \oplus K) \oplus x_2 = (x_1 \oplus x_2) \oplus K$ to

The problem



- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted \oplus) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

Assumption: the players behave honestly. They can interact through secure and authenticated channels.

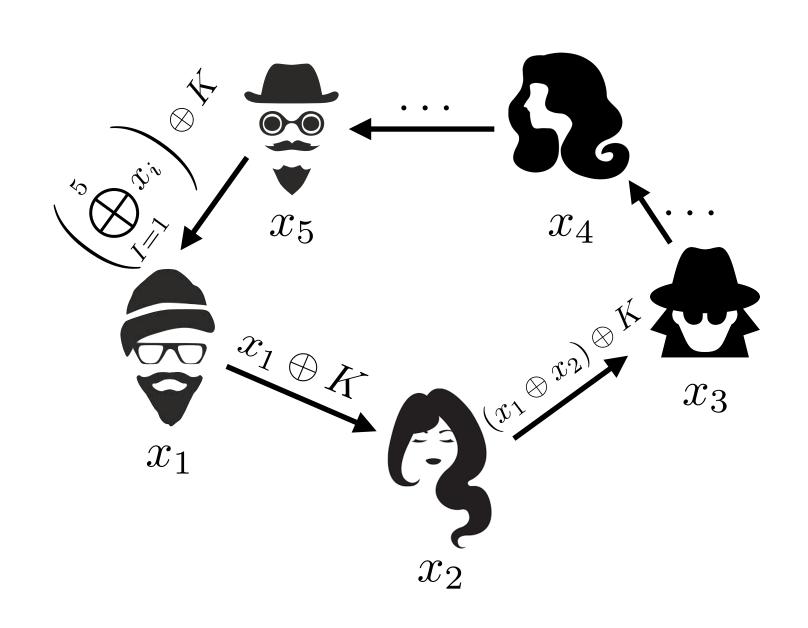
Solution



generates a random 128-bit string K and sends $x_1 \oplus K$ to

computes and sends $(x_1 \oplus K) \oplus x_2 = (x_1 \oplus x_2) \oplus K$ to

The problem

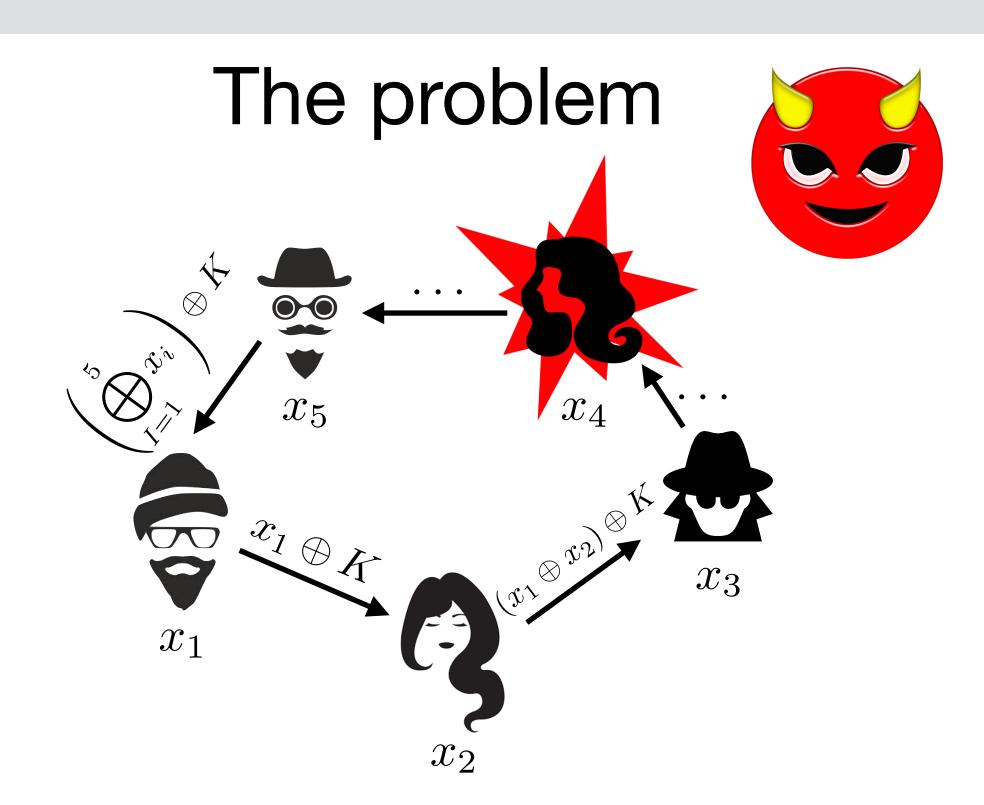


- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted +) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

Assumption: the players behave honestly. They can interact through secure and authenticated channels.

Solution

- generates a random 128-bit string K and sends $x_1 \oplus K$ to
- Computes and sends $(x_1 \oplus K) \oplus x_2 = (x_1 \oplus x_2) \oplus K$ to and so on... Until g gets back $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5) \oplus K$, removes K, and sends the result.

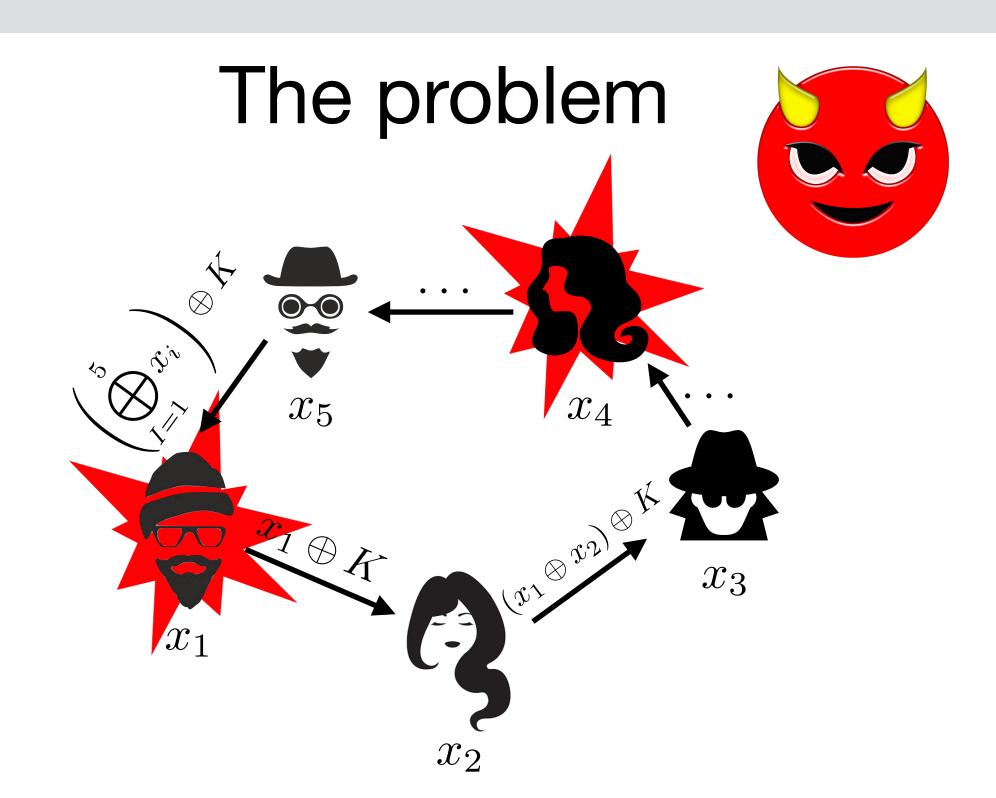


- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted \oplus) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

Assumption: the players behave honestly. They can interact through secure and authenticated channels.

Security

If the adversary corrupts a single party, we are fine: it sees only something masked with K



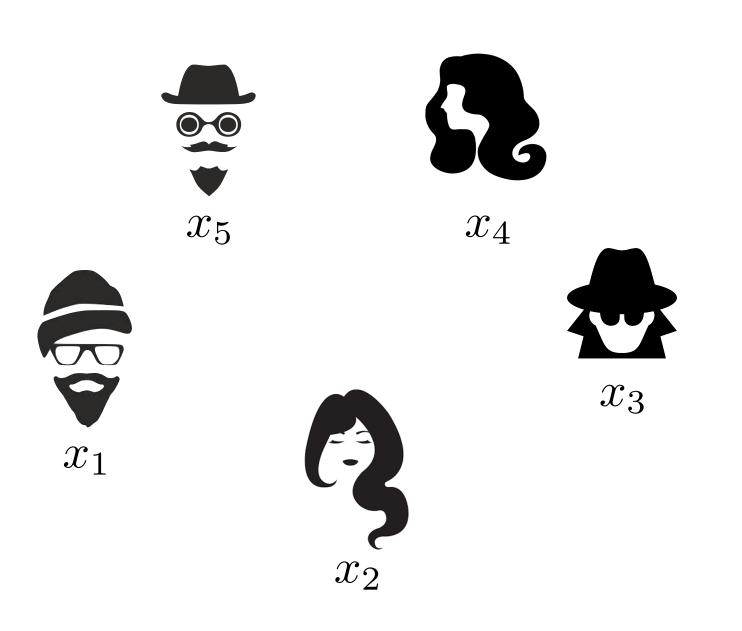
- Five players with respective inputs $x_1, x_2, \cdots, x_5 \in \{0, 1\}^{128}$
- Goal: computing the bitwise-XOR (denoted \oplus) of all inputs: $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$

Assumption: the players behave honestly. They can interact through secure and authenticated channels.

Security

If the adversary corrupts a single party, we are fine: it sees only something masked with K In case of two corruptions, we are in trouble: the adversary can learn K!

Real World



Goal

- ullet Public function f
- All players want to get $f(x_1, x_2, x_3, x_4, x_5)$
- No player should learn anything more

Real World



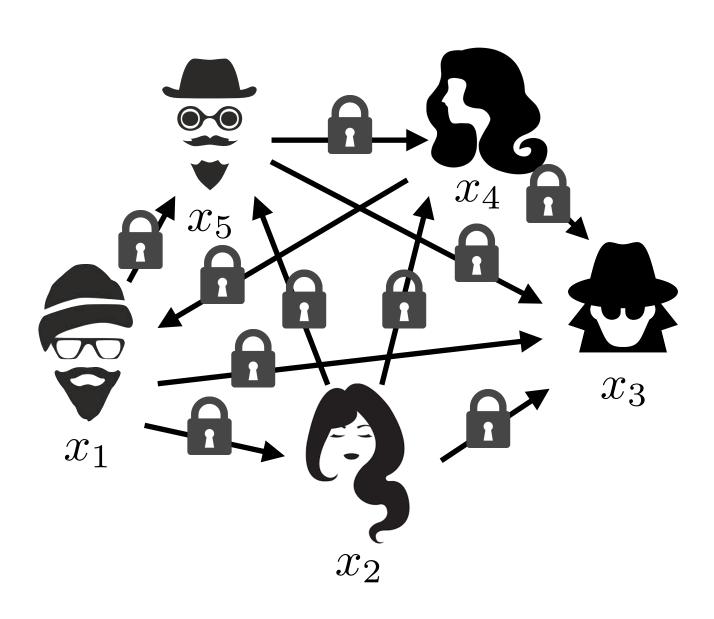
Network model

- Fully authenticated network (with signatures)
- Two communication models

1. The broadcast (or blackboard) network

Each party with message **m** can write it on a public blackboard. Everyone can see what is written on the board. All messages are authenticated.

Real World



Network model

- Fully authenticated network (with signatures)
- Two communication models

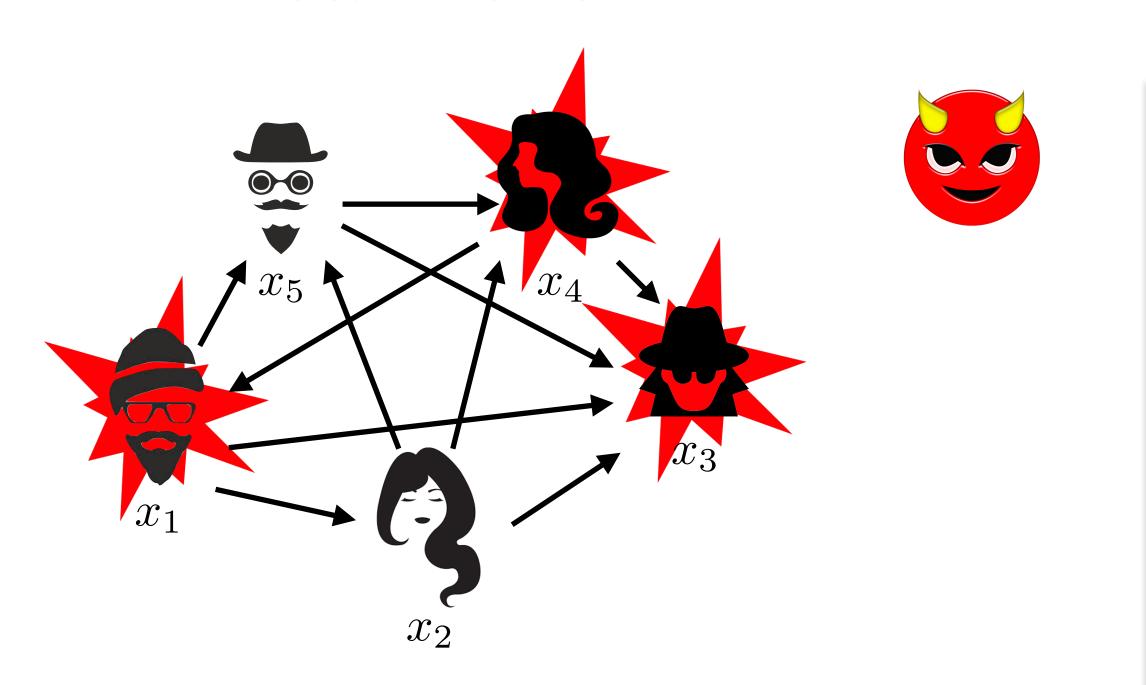
1. The broadcast (or blackboard) network

Each party with message **m** can write it on a public blackboard. Everyone can see what is written on the board. All messages are authenticated.

2. The point-to-point network

All parties are connected through a complete point-to-point network. Each channel is perfectly authenticated and private.

Real World

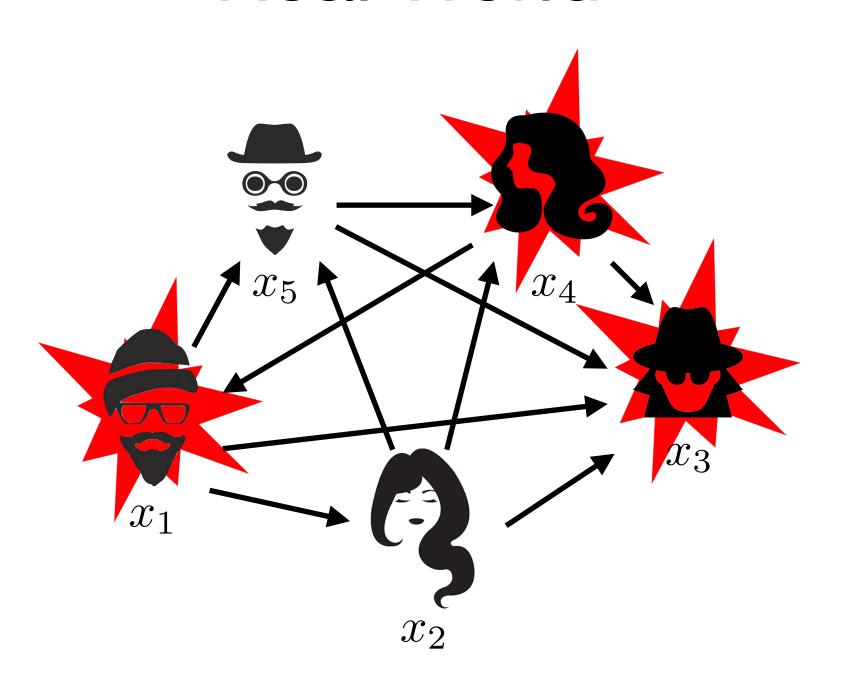


Adversarial model

An adversary can corrupt a subset of the players

The adversary sees everything a corrupted player sees: its private input, and all messages it sends or receive.

Real World



Adversarial model

- An adversary can corrupt a subset of the players
- Two standard corruption models

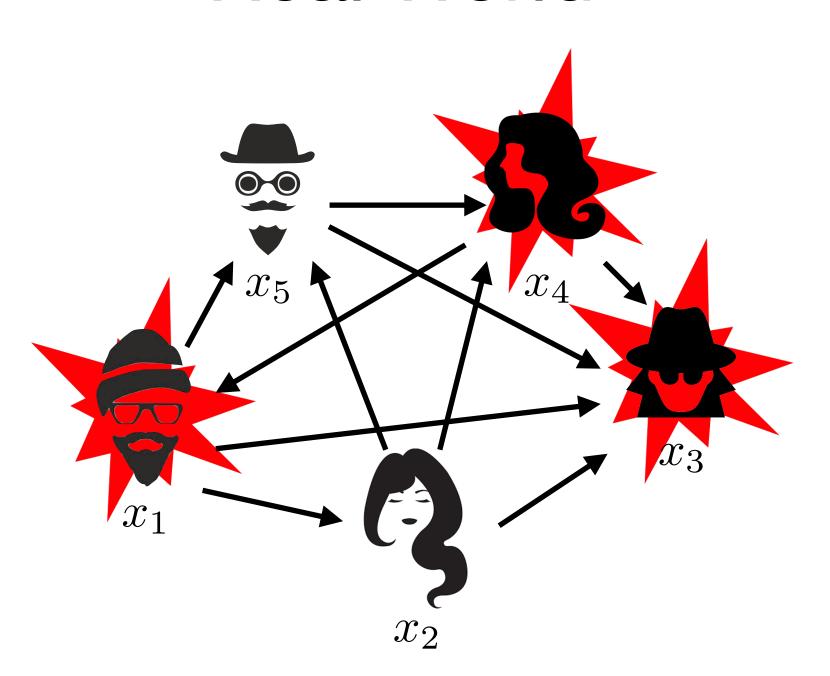
1. Honest-but-curious corruption

The corrupted parties follow the specification of the protocol. The adversary is passive: he tries to retrieve private information by observing the transcript.

2. Malicious corruption

The adversary fully control the corrupted parties, and can make them behave arbitrarily in the protocol.

Real World



- An adversary can corrupt a subset of the players
- Two standard corruption models

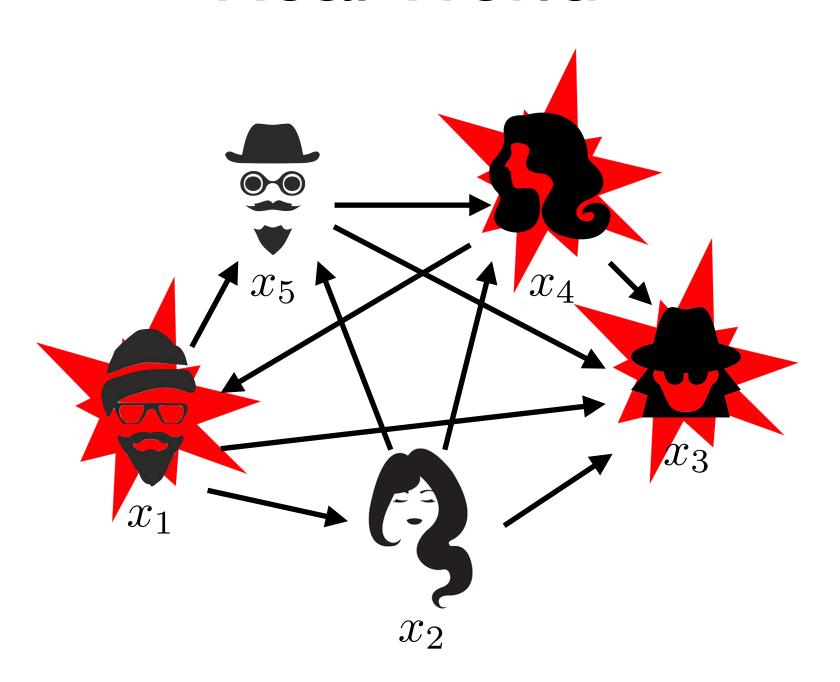
1. Honest-but-curious corruption

The corrupted parties follow the specification of the protocol. The adversary is passive: he tries to retrieve private information by observing the transcript.

2. Malicious corruption

The adversary fully control the corrupted parties, and can make them behave arbitrarily in the protocol.

Real World



Adversarial model

- An adversary can corrupt a subset of the players
- Two standard corruption models
- Two standard corruption levels

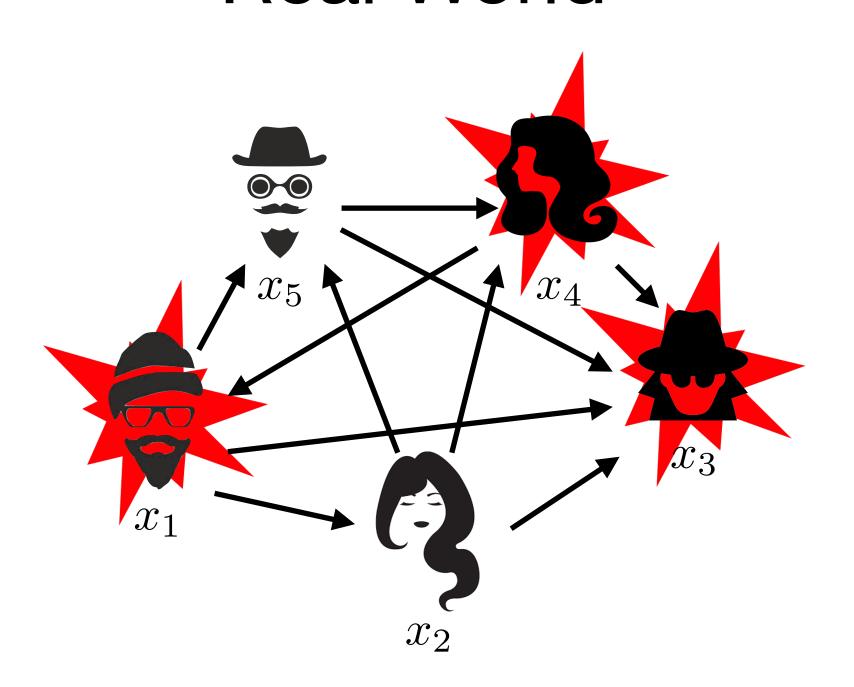
1. Honest majority

The adversary can simultaneously corrupt only a strict minority of the players.

2. Dishonest majority

The adversary can corrupt all-but-one players.

Real World



- An adversary can corrupt a subset of the players
- Two standard corruption models
- Two standard corruption levels

1. Honest majority

The adversary can simultaneously corrupt only a strict minority of the players.

2. Dishonest majority

The adversary can corrupt all-but-one players.

Computational Indistinguishability

You should be familiar with the notion of computational indistinguishability. If you are not, please say so!

Quick recap:

Computational Indistinguishability

You should be familiar with the notion of computational indistinguishability. If you are not, please say so!

Quick recap: $\mathcal{D}_0 = \{\mathcal{D}_{0,\lambda}\}_{\lambda \in \mathbb{N}}$ $\mathcal{D}_1 = \{\mathcal{D}_{1,\lambda}\}_{\lambda \in \mathbb{N}}$

Computational Indistinguishability

Quick recap:
$$\mathcal{D}_0 = \{\mathcal{D}_{0,\lambda}\}_{\lambda \in \mathbb{N}}$$
 $\mathcal{D}_1 = \{\mathcal{D}_{1,\lambda}\}_{\lambda \in \mathbb{N}}$

Support =
$$\{0,1\}^{\lambda}$$

Computational Indistinguishability

Quick recap:
$$\mathcal{D}_0 = \{\mathcal{D}_{0,\lambda}\}_{\lambda \in \mathbb{N}}$$
 $\mathcal{D}_1 = \{\mathcal{D}_{1,\lambda}\}_{\lambda \in \mathbb{N}}$

Support =
$$\{0,1\}^{\lambda}$$
 $\mathcal{D}_0 \approx \mathcal{D}_1 \iff \forall \mathsf{PPT}\mathcal{A}, \forall \text{ large enough } \lambda \in \mathbb{N},$

Computational Indistinguishability

You should be familiar with the notion of computational indistinguishability. If you are not, please say so!

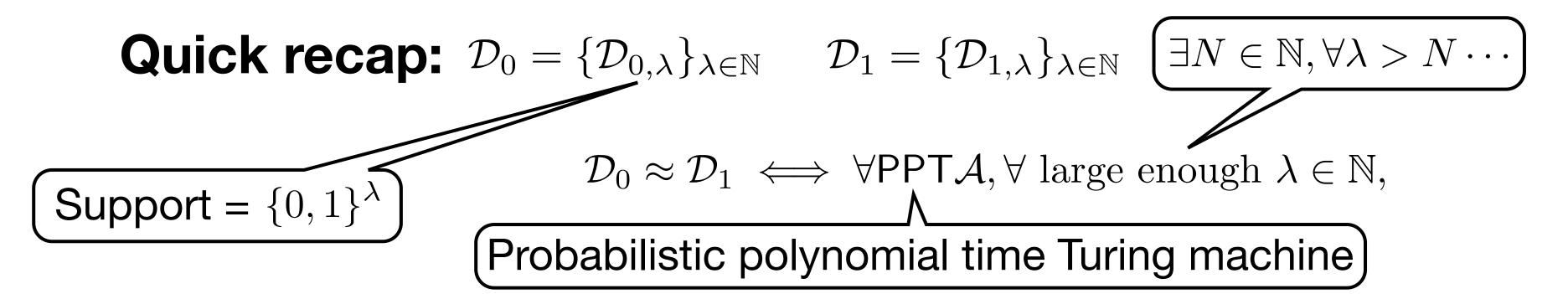
Quick recap:
$$\mathcal{D}_0 = \{\mathcal{D}_{0,\lambda}\}_{\lambda \in \mathbb{N}}$$
 $\mathcal{D}_1 = \{\mathcal{D}_{1,\lambda}\}_{\lambda \in \mathbb{N}}$

Support =
$$\{0,1\}^{\lambda}$$

$$\mathcal{D}_0 \approx \mathcal{D}_1 \iff \forall \mathsf{PPTA}, \forall \mathsf{large enough } \lambda \in \mathbb{N},$$

Probabilistic polynomial time Turing machine)

Computational Indistinguishability

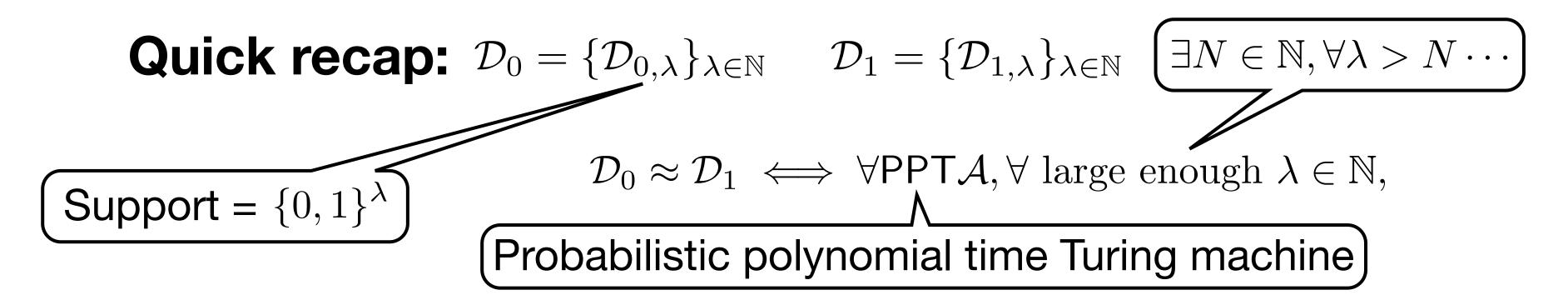


Computational Indistinguishability

Quick recap:
$$\mathcal{D}_0 = \{\mathcal{D}_{0,\lambda}\}_{\lambda \in \mathbb{N}}$$
 $\mathcal{D}_1 = \{\mathcal{D}_{1,\lambda}\}_{\lambda \in \mathbb{N}}$ $\exists N \in \mathbb{N}, \forall \lambda > N \cdots$
Support = $\{0,1\}^{\lambda}$ Probabilistic polynomial time Turing machine

$$|\Pr[x \leftarrow \mathcal{D}_{0,\lambda} : \mathcal{A}(x) = 1] - \Pr[x \leftarrow \mathcal{D}_{1,\lambda} : \mathcal{A}(x) = 1]| = \mathsf{negl}(\lambda)$$

Computational Indistinguishability



$$|\Pr[x \leftarrow \mathcal{D}_{0,\lambda} : \mathcal{A}(x) = 1] - \Pr[x \leftarrow \mathcal{D}_{1,\lambda} : \mathcal{A}(x) = 1]| = \mathsf{negl}(\lambda)$$

$$\forall c \in \mathbb{N}, \forall \text{ large enough } \lambda \in \mathbb{N}, \mathsf{negl}(\lambda) < 1/\lambda^c$$

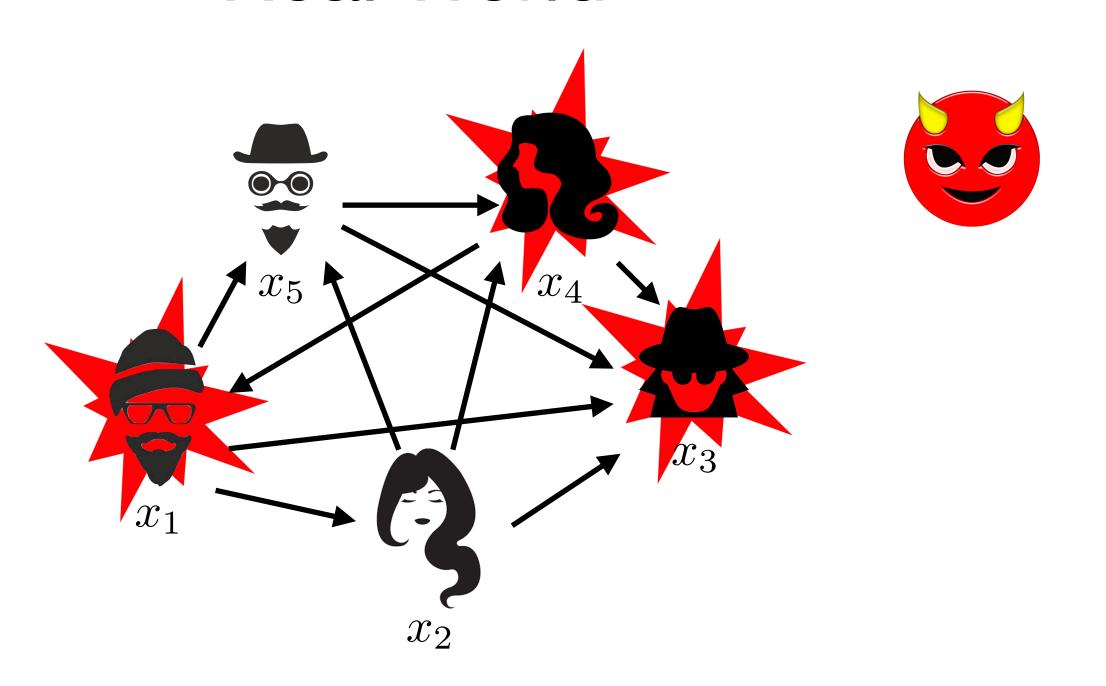
Computational Indistinguishability - Example

$$(\mathbb{G}, g, p) \leftarrow \mathsf{GroupGen}(1^{\lambda})$$

$$\{(g^a,g^b,g^{ab}) \mid (a,b) \leftarrow \mathbb{Z}_p^2\} \approx \{(g^a,g^b,g^c) \mid (a,b,c) \leftarrow \mathbb{Z}_p^3\}$$

(this is the Decisional Diffie-Hellman assumption)

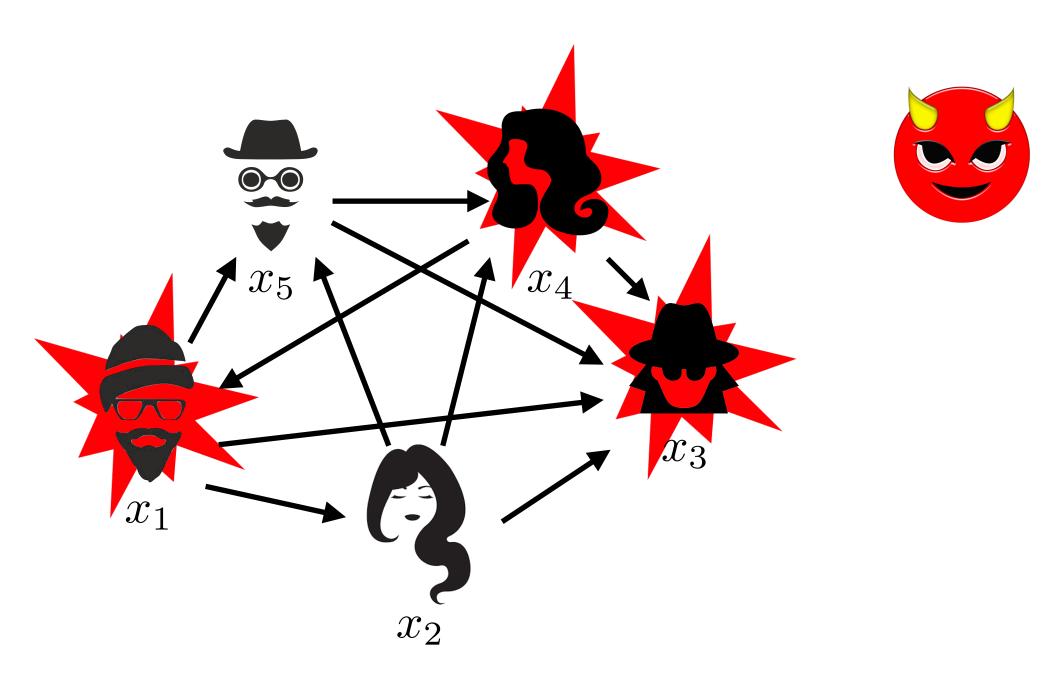
Real World



Real Behavior

- Players interact through [network model]
- Some players are corrupted in [corruption model]

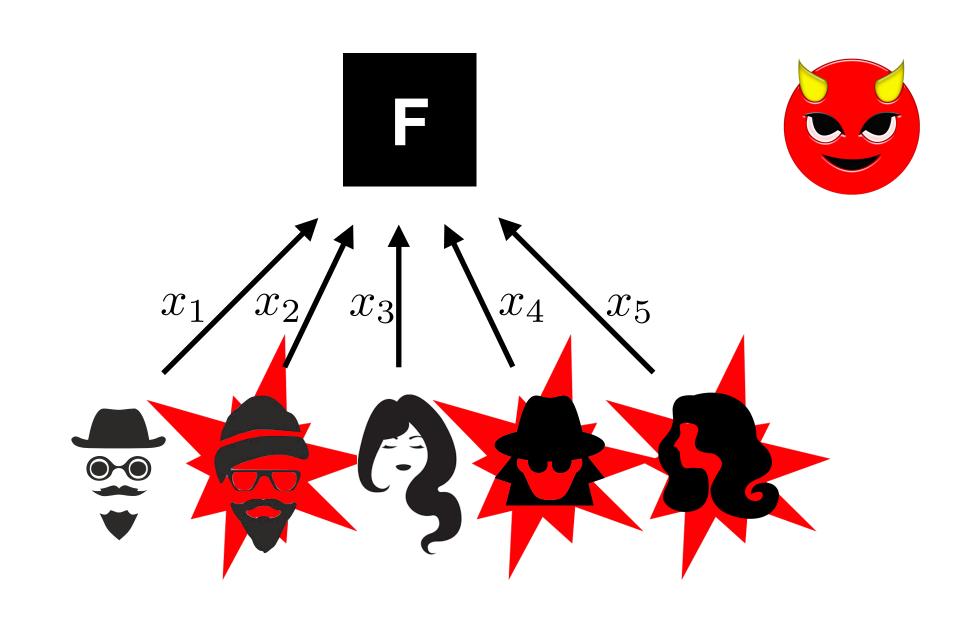
Real World



Real Behavior

- Players interact through [network model]
- Some players are corrupted in [corruption model]

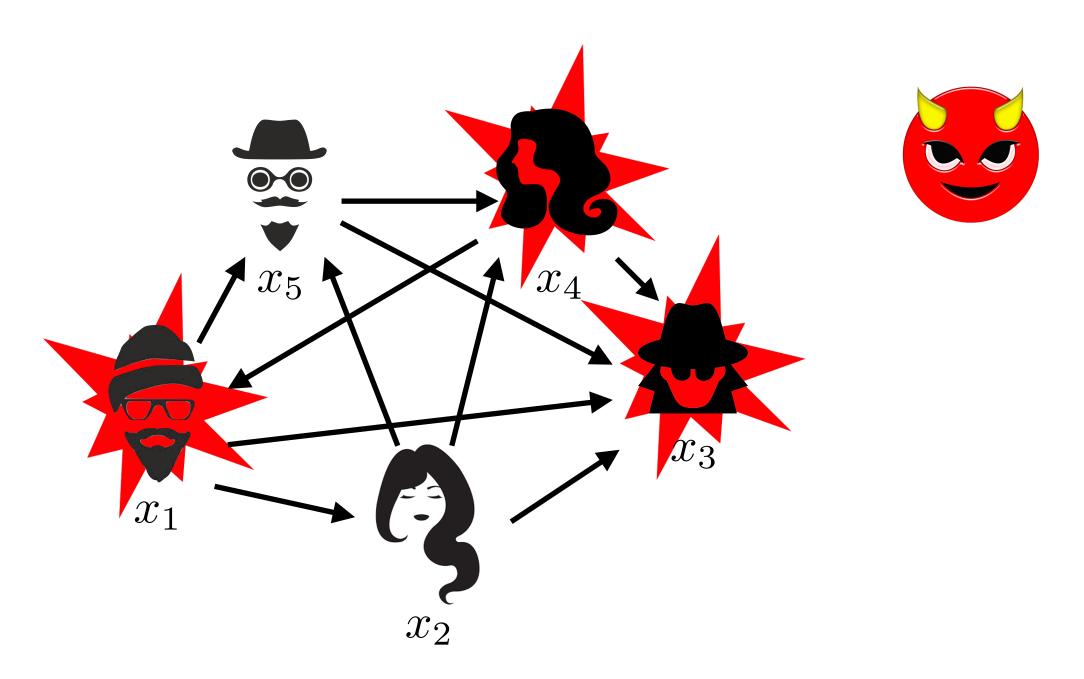
Ideal World



Ideal Behavior

All parties send their input to a trusted party F
through perfectly secure authenticated channels

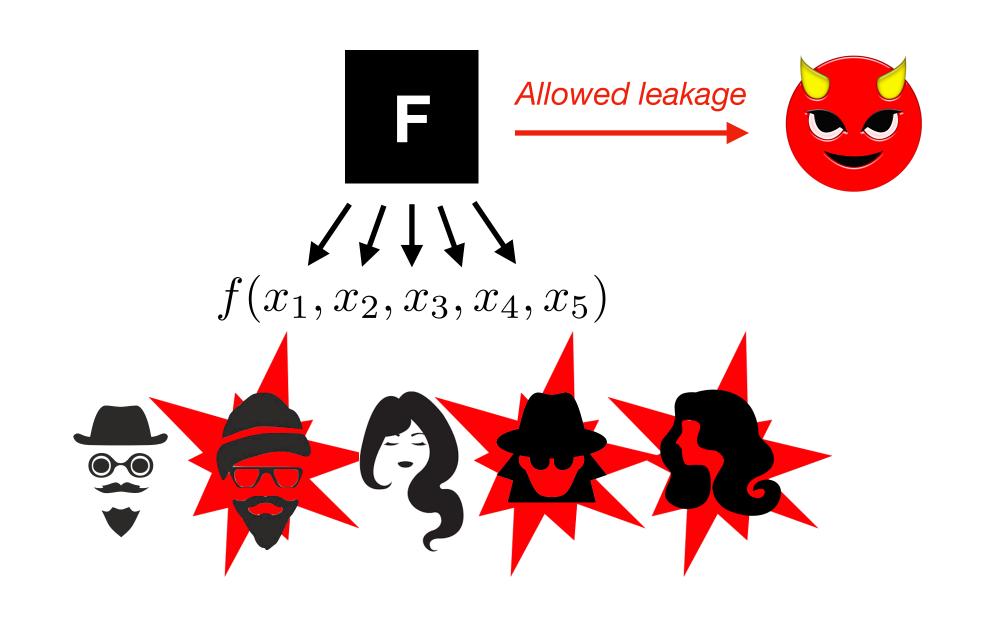
Real World



Real Behavior

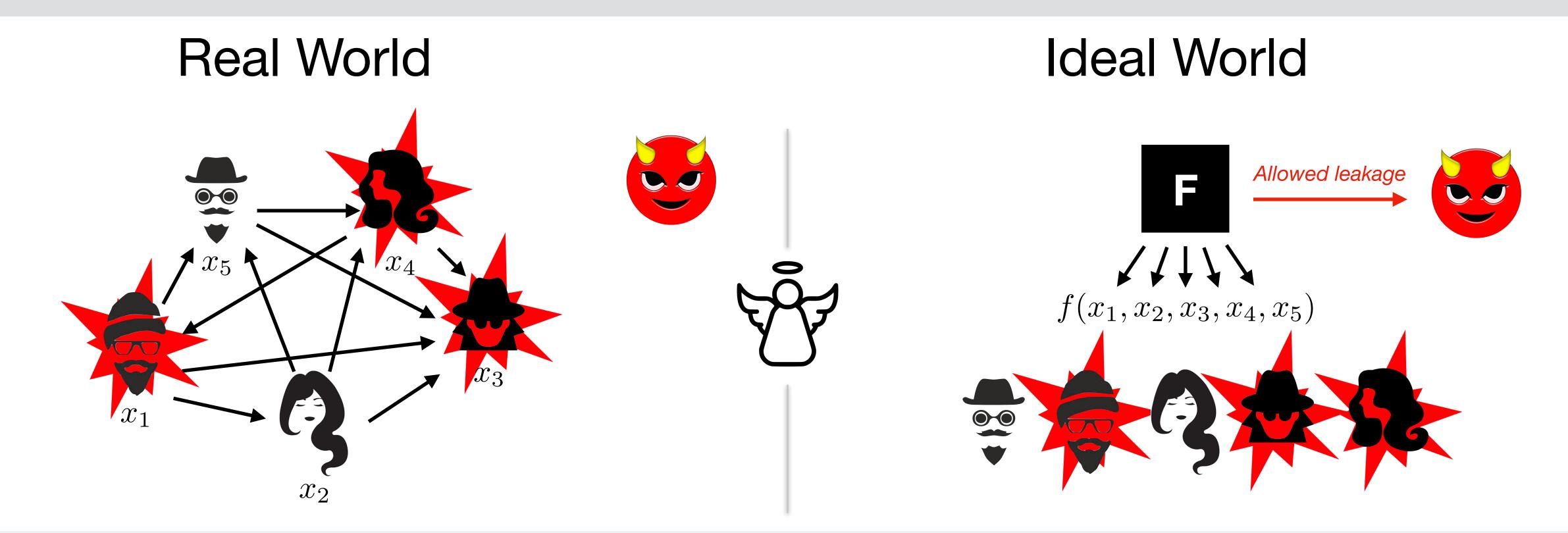
- Players interact through [network model]
- Some players are corrupted in [corruption model]

Ideal World



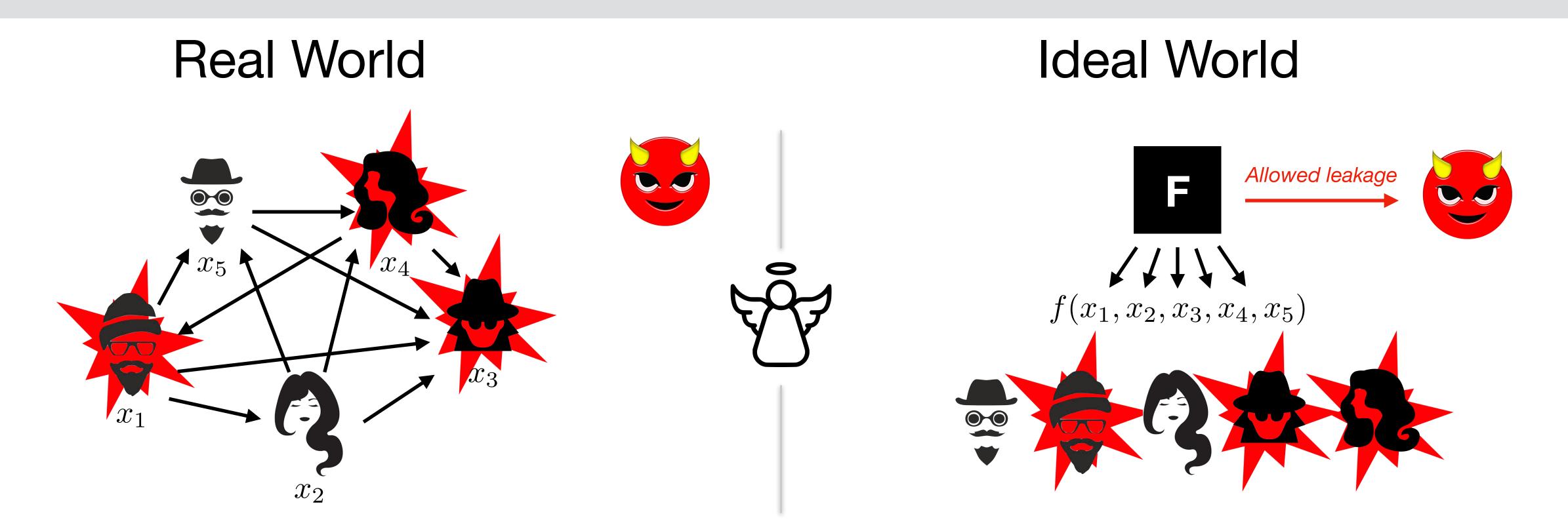
Ideal Behavior

- All parties send their input to a trusted party F
 through perfectly secure authenticated channels
- F computes the output and reveals the result
- The adversary only gets some allowed leakage (+ input/output of corrupted parties)



Simulation

Core idea: we construct a *simulator* which fools the adversary into believing he is playing the real world protocol, while making him effectively play the ideal world protocol. Then, we prove that *no adversary* can distinguish the simulated protocol from the real protocol.

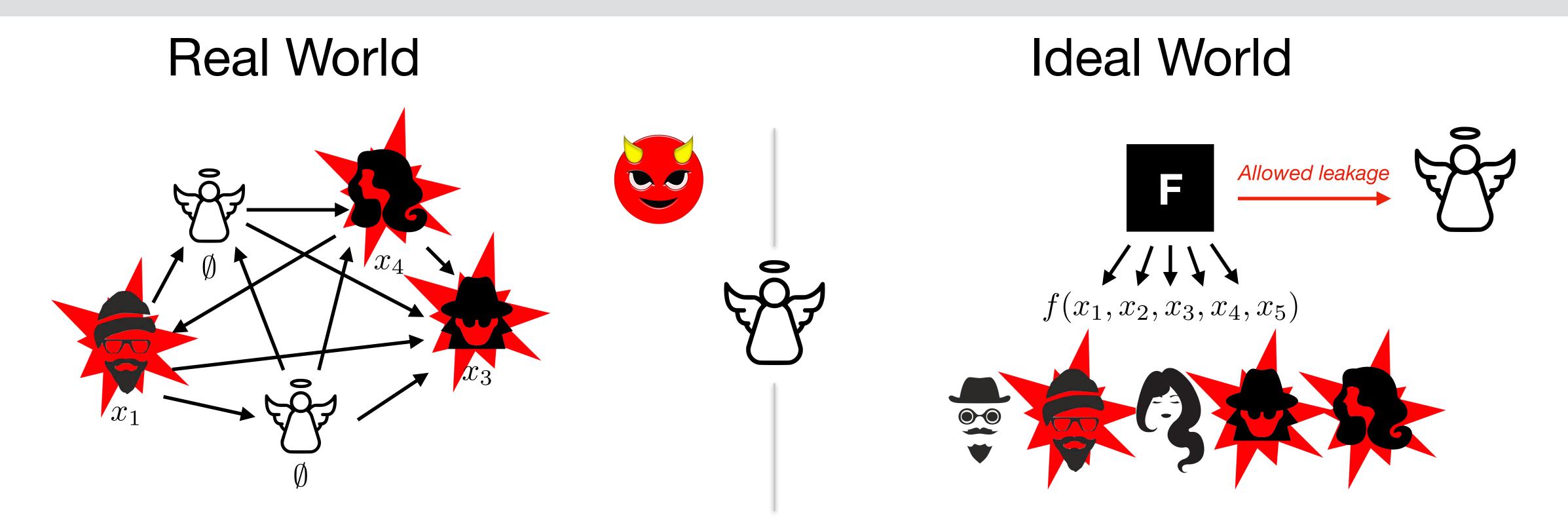


Simulation

Core idea: we construct a *simulator* which fools the adversary into believing he is playing the real world protocol, while making him effectively play the ideal world protocol. Then, we prove that *no adversary* can distinguish the simulated protocol from the real protocol.

Take the time to convince yourself that this guarantees that the real protocol is as secure as the ideal functionality. If you cannot convince yourself, please ask.

The Model - Defining Security

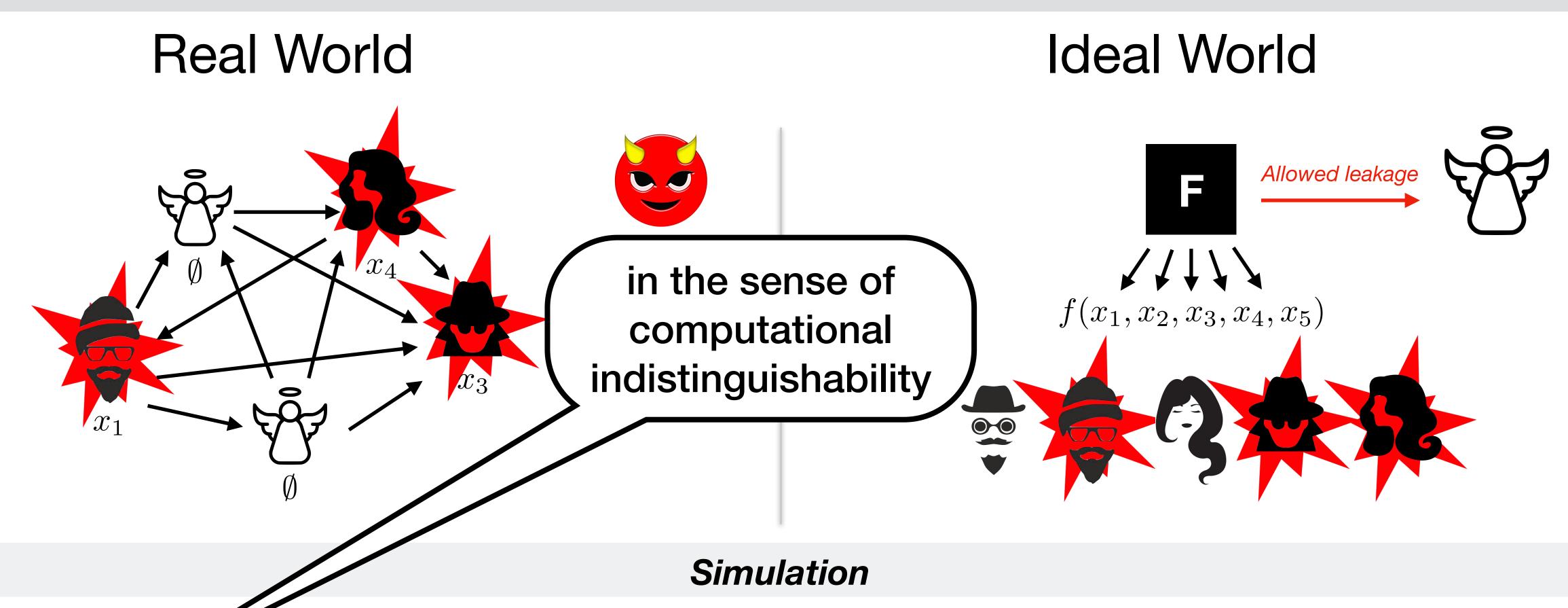


Simulation

Core idea: we construct a *simulator* which fools the adversary into believing he is playing the real world protocol, while making him effectively play the ideal world protocol. Then, we prove that *no adversary* can distinguish the simulated protocol from the real protocol.

emulates the honest parties in the real world, and the adversary in the ideal world.

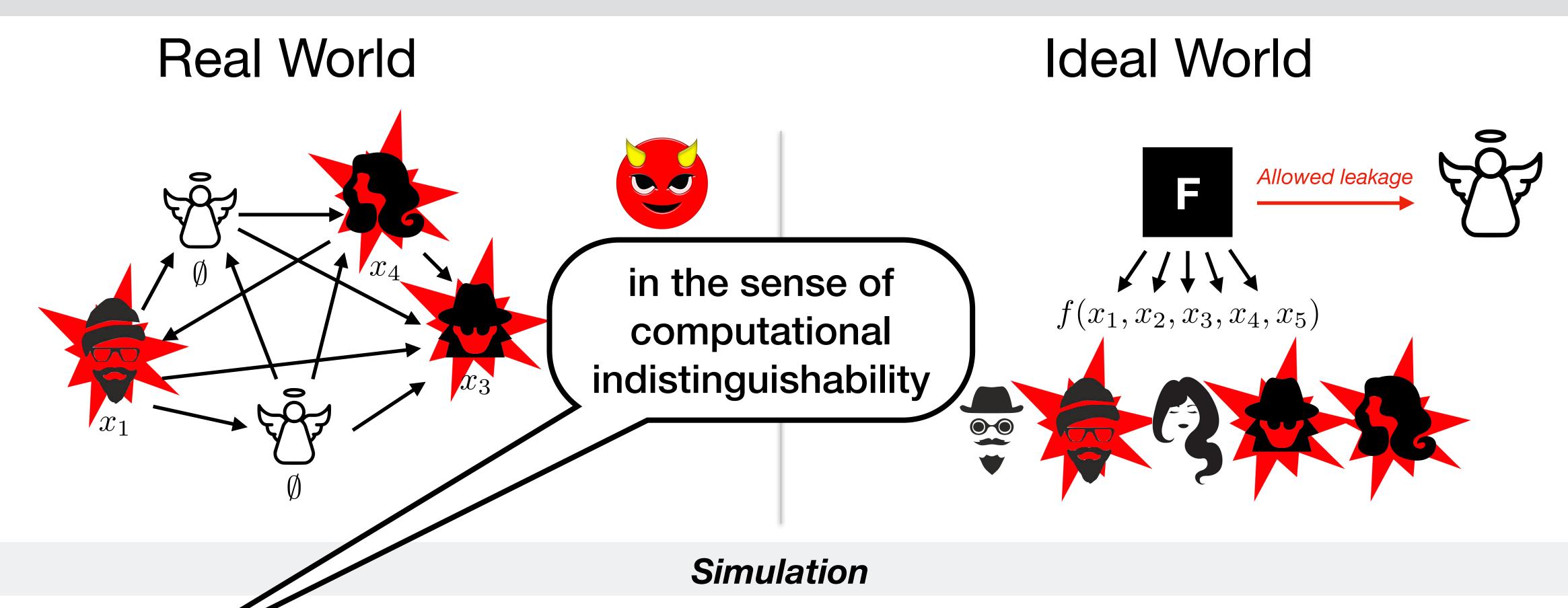
The Model - Defining Security



Core idea: we construct a *simulator* which fools the adversary into believing he is playing the real world protocol, while making him effectively play the ideal world protocol. Then, we prove that *no adversary* can distinguish the simulated protocol from the real protocol.

emulates the honest parties in the real world, and the adversary in the ideal world.

The Model - Defining Security



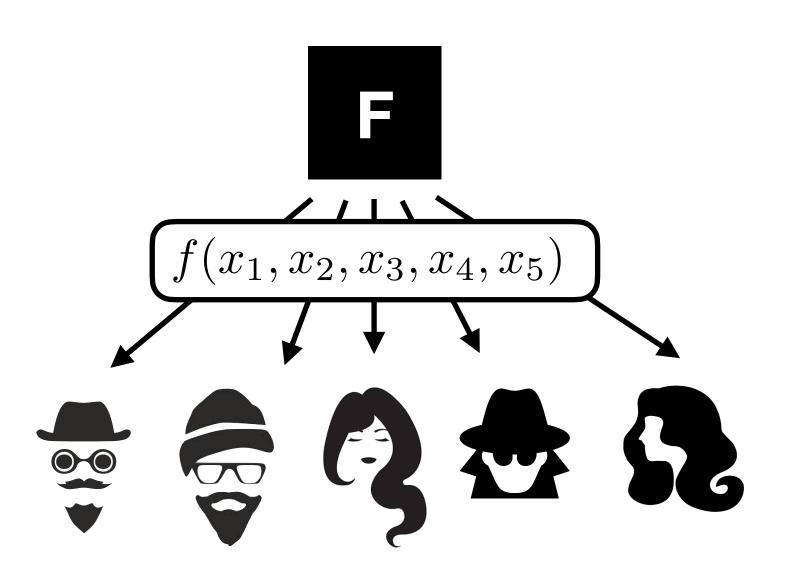
Core idea: we construct a *simulator* which fools the adversary into believing he is playing the real world protocol, while making him effectively play the ideal world protocol. Then, we prove that *no adversary* can distinguish the simulated protocol from the real protocol.

The distributions of the adversary's view in the real world and in the simulated world are computationally indistinguishable

Exercise 2

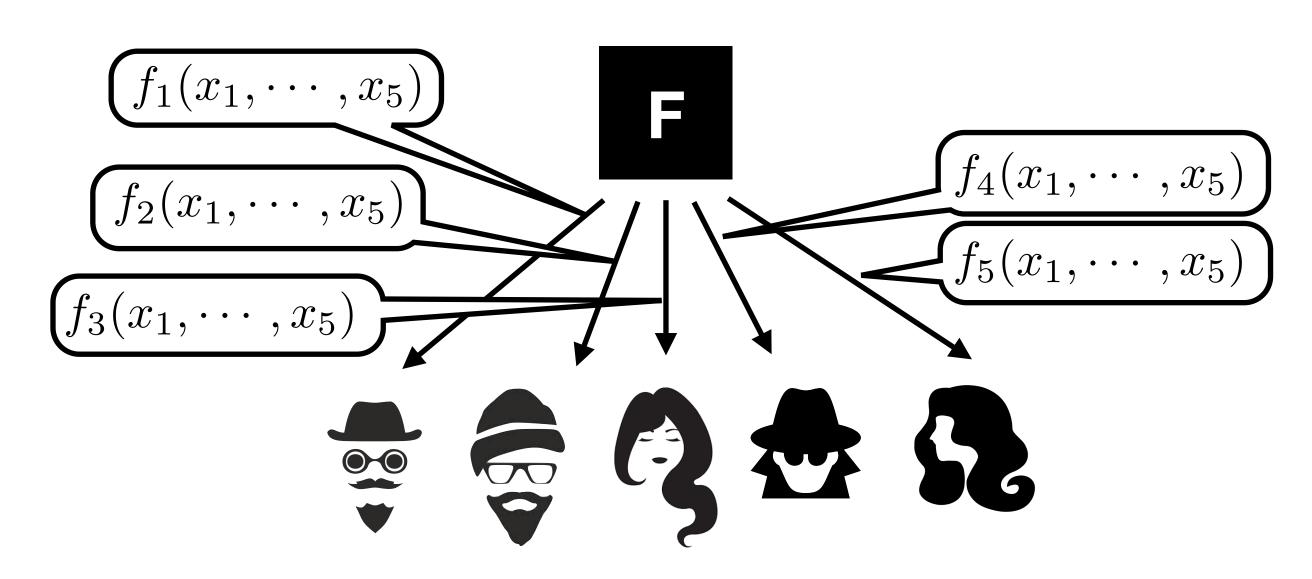
Same Output

Model: all parties receive the same output



Independent Outputs

We can also consider a more general model, where each party gets a specific output (this also captures the case where not all parties should get the output).



Exercise 2

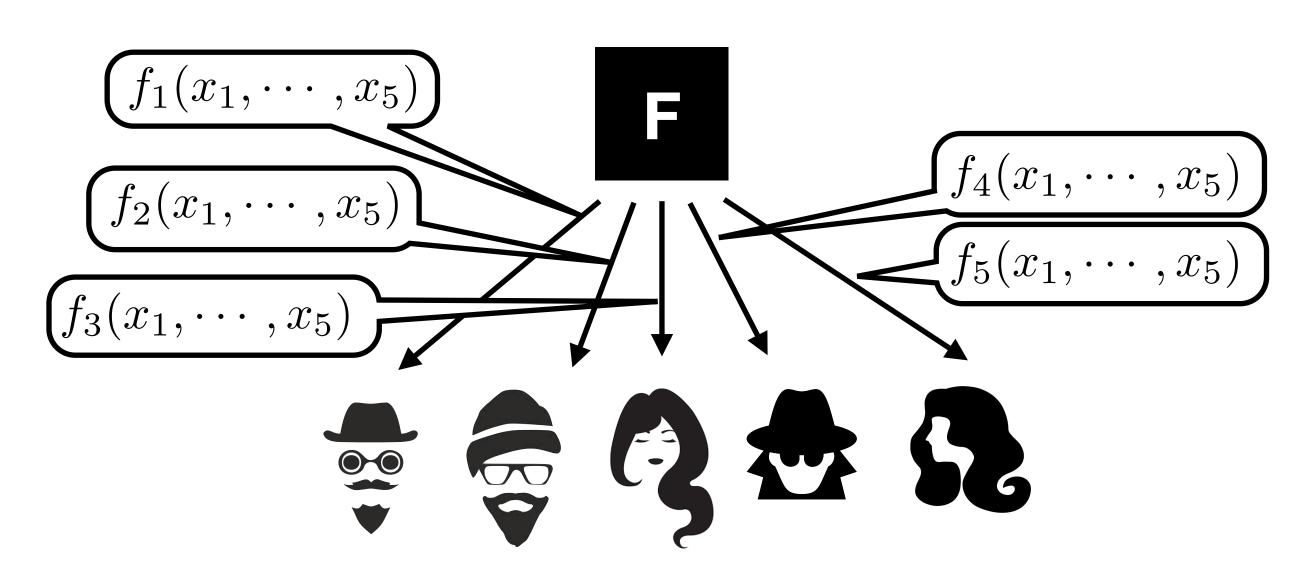
Same Output

Model: all parties receive the same output

$f(x_1, x_2, x_3, x_4, x_5)$

Independent Outputs

We can also consider a more general model, where each party gets a specific output (this also captures the case where not all parties should get the output).



Q: show that a general solution for the same output scenario implies a general solution for the independent outputs scenario.

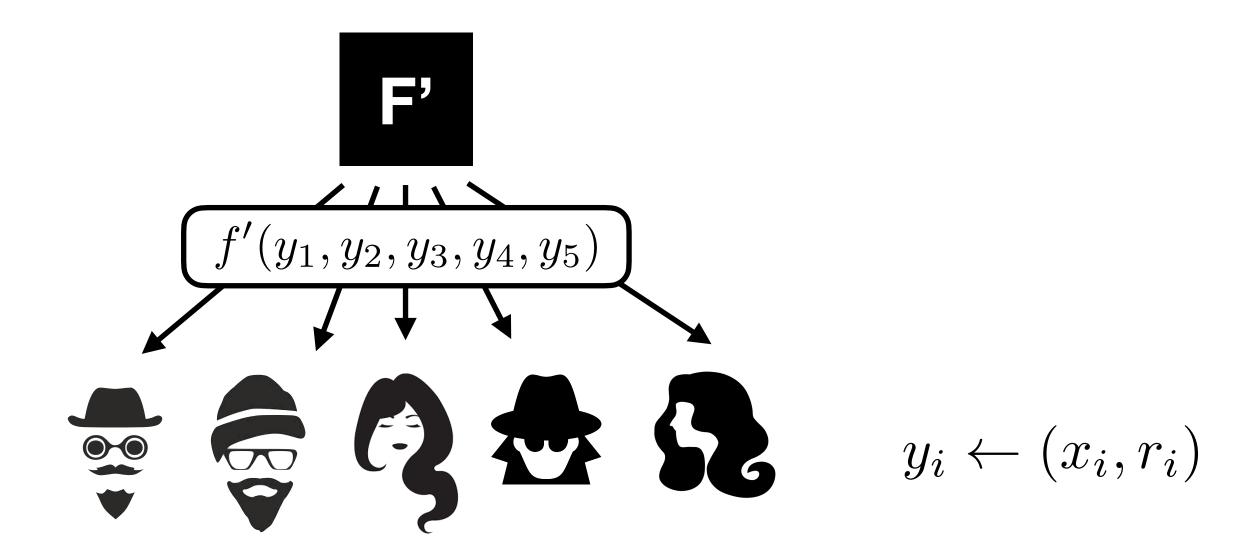
Suppose that for all functionality $f: X_1 \times X_2 \times X_3 \times X_4 \times X_5 \mapsto \{0,1\}^*$, there is a secure protocol where all parties get the same output. Let $(x_1, x_2, x_3, x_4, x_5)$ be the parties' inputs, and let $(f_1, f_2, f_3, f_4, f_5)$ be the functions computing the independent outputs each party wants.

Suppose that for all functionality $f: X_1 \times X_2 \times X_3 \times X_4 \times X_5 \mapsto \{0,1\}^*$, there is a secure protocol where all parties get the same output. Let $(x_1, x_2, x_3, x_4, x_5)$ be the parties' inputs, and let $(f_1, f_2, f_3, f_4, f_5)$ be the functions computing the independent outputs each party wants.

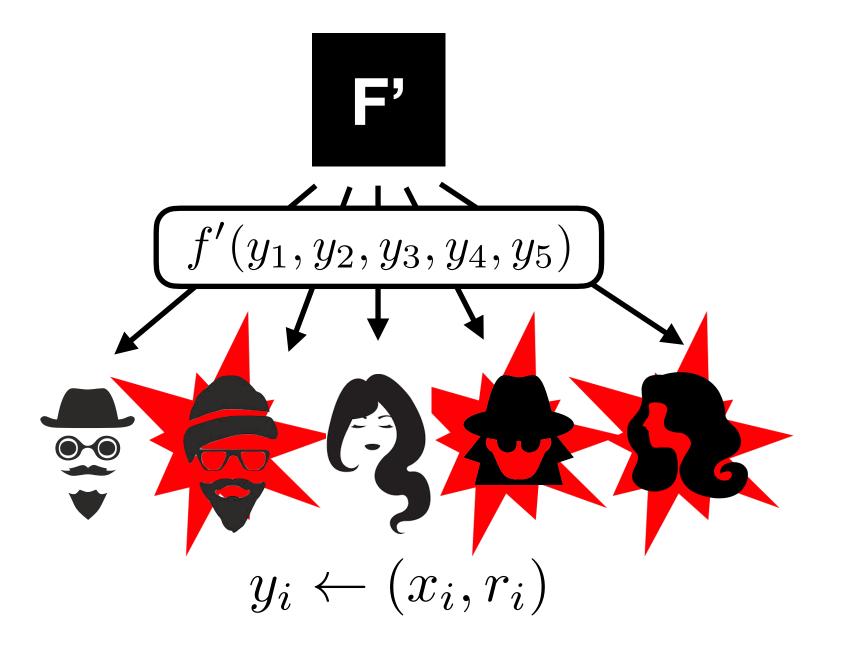
Define the following single output 5-party functionality F' which securely computes:

$$f':((x_1,r_1),\cdots,(x_5,r_5))\mapsto (r_1\oplus f_1(x_1,\cdots,x_5),\cdots,r_5\oplus f_5(x_1,\cdots,x_5))$$

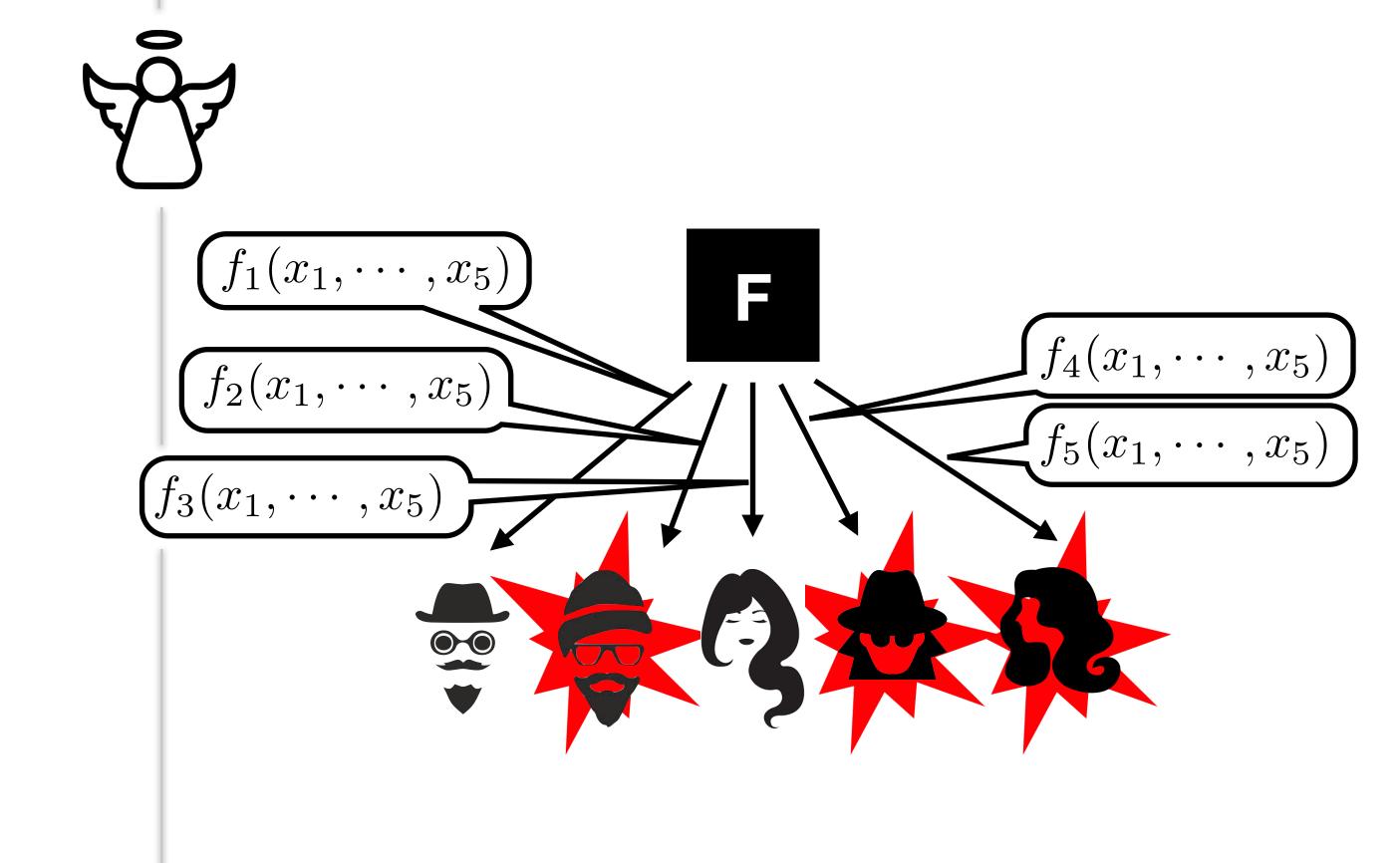
Reduction: each party with input x_i picks a uniformly random r_i . All parties emulate **F**'. **Security:** follows from the fact that r_i perfectly masks $f_i(x_1, \dots, x_5)$.



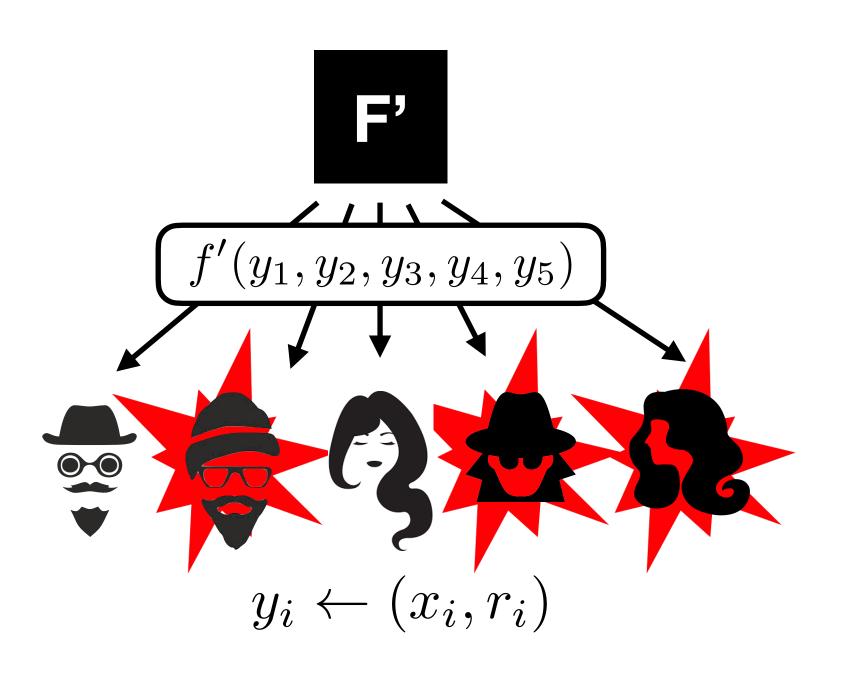
Real World

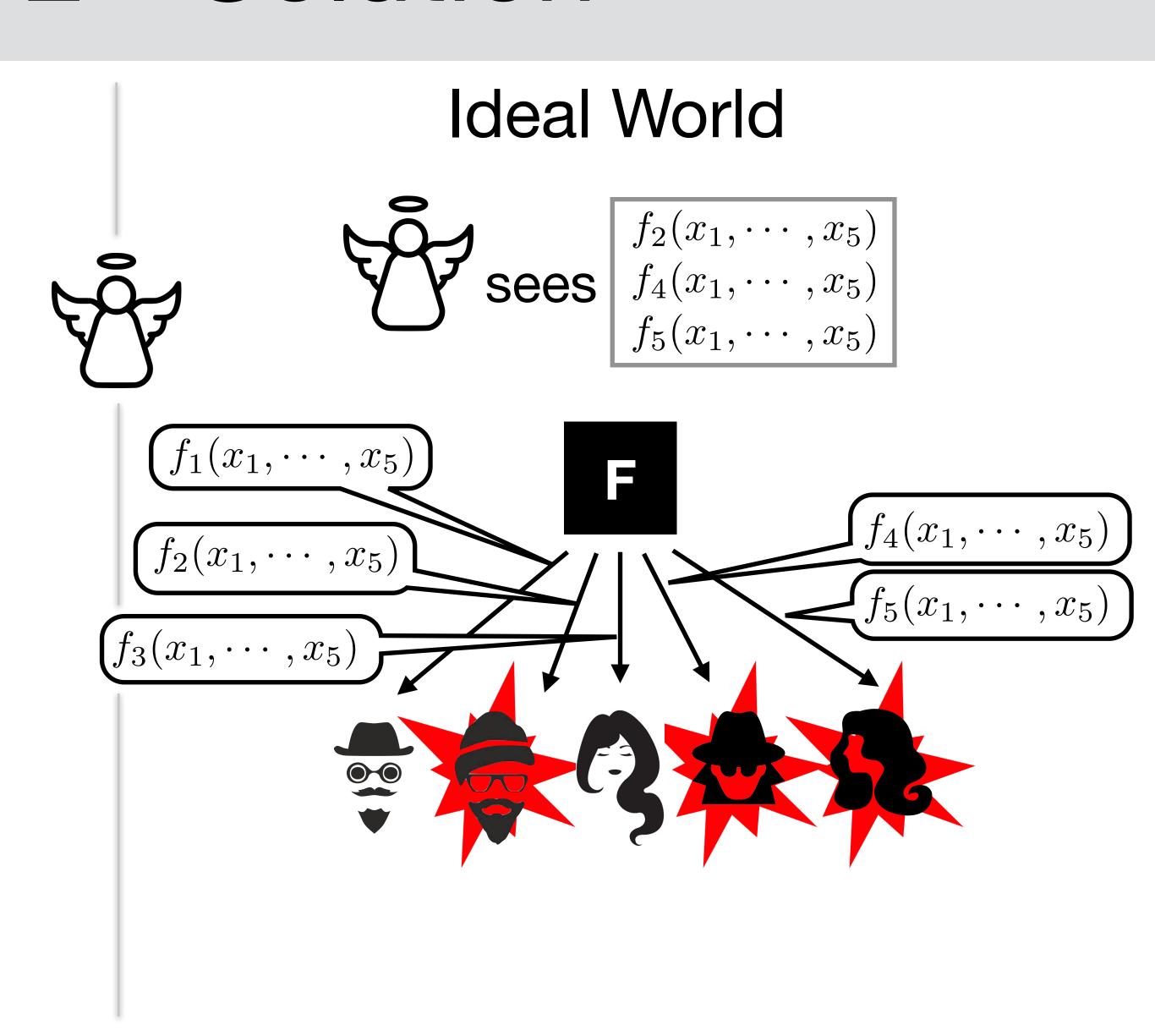


Ideal World



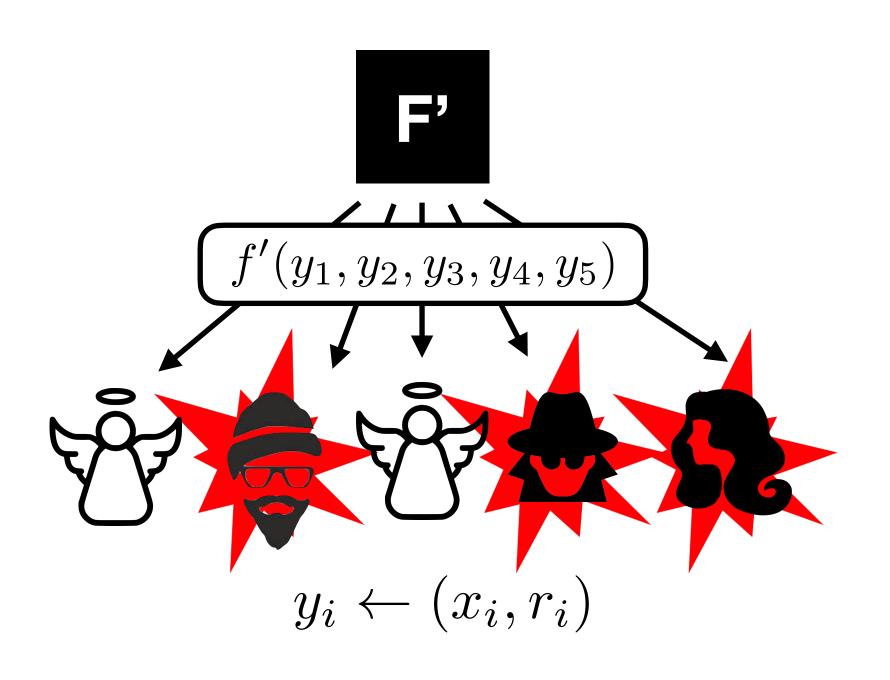
Real World

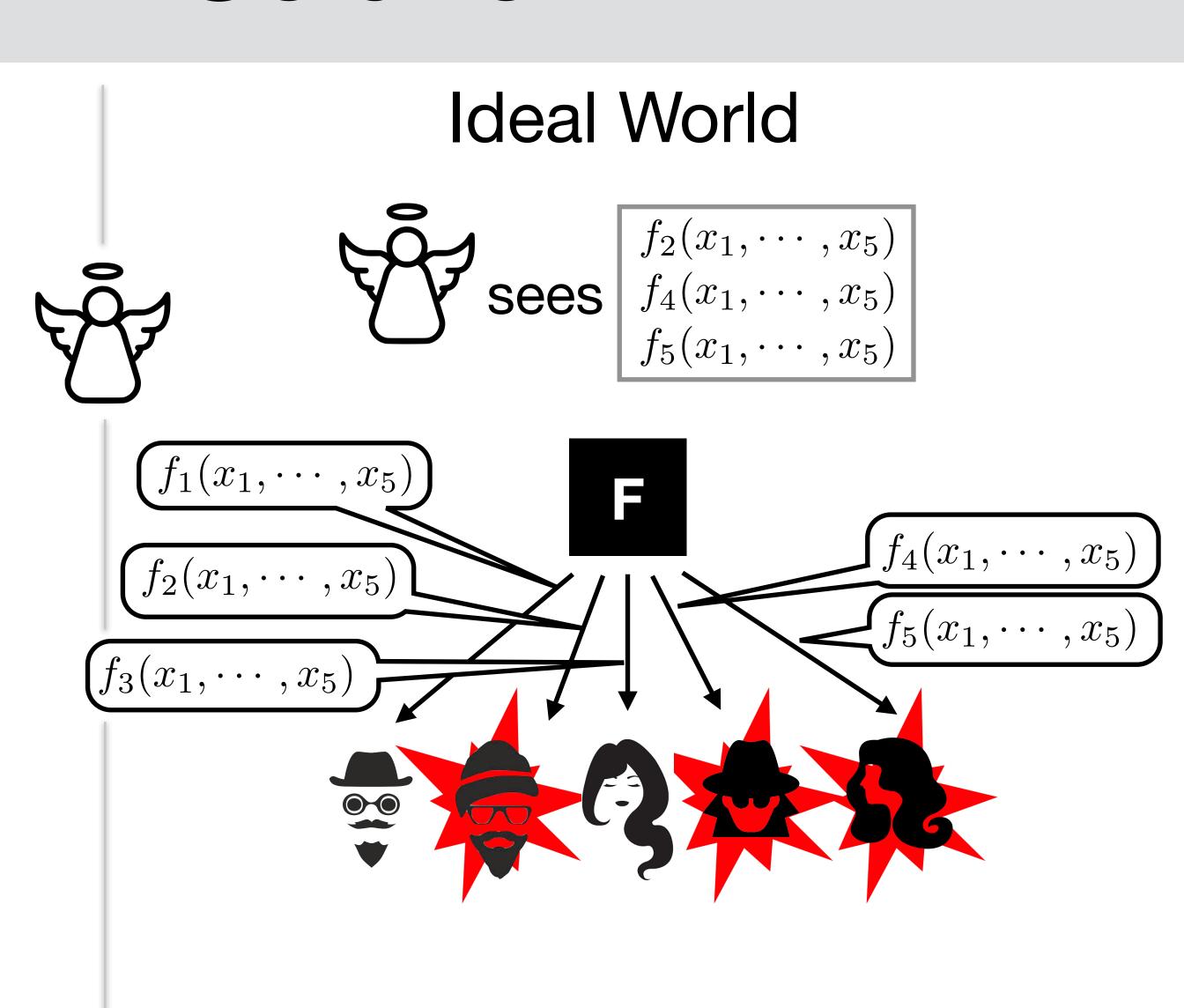




Real World

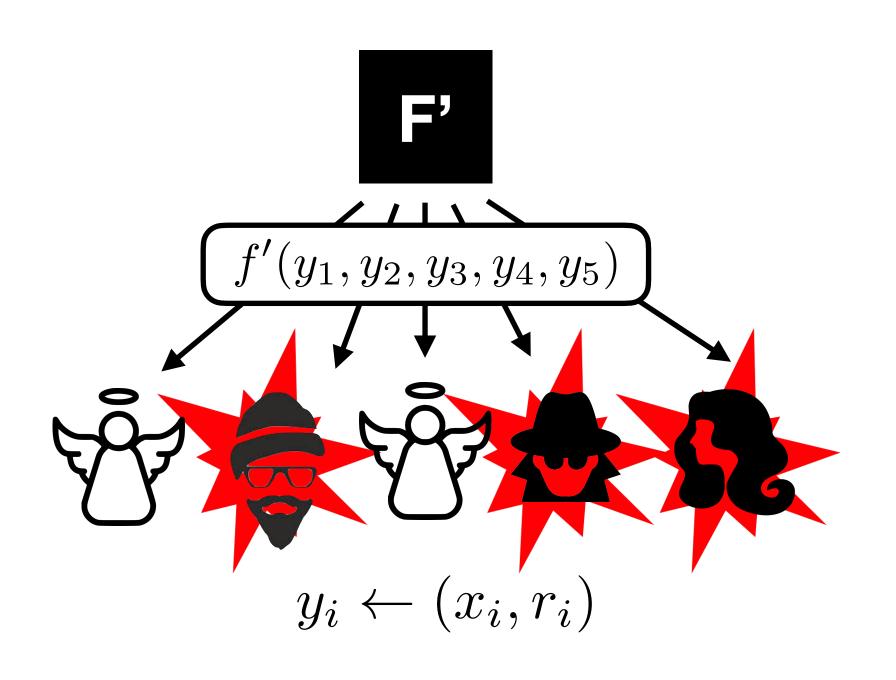
Nothing to emulate? The adversary sees nothing of what the emulated parties send...

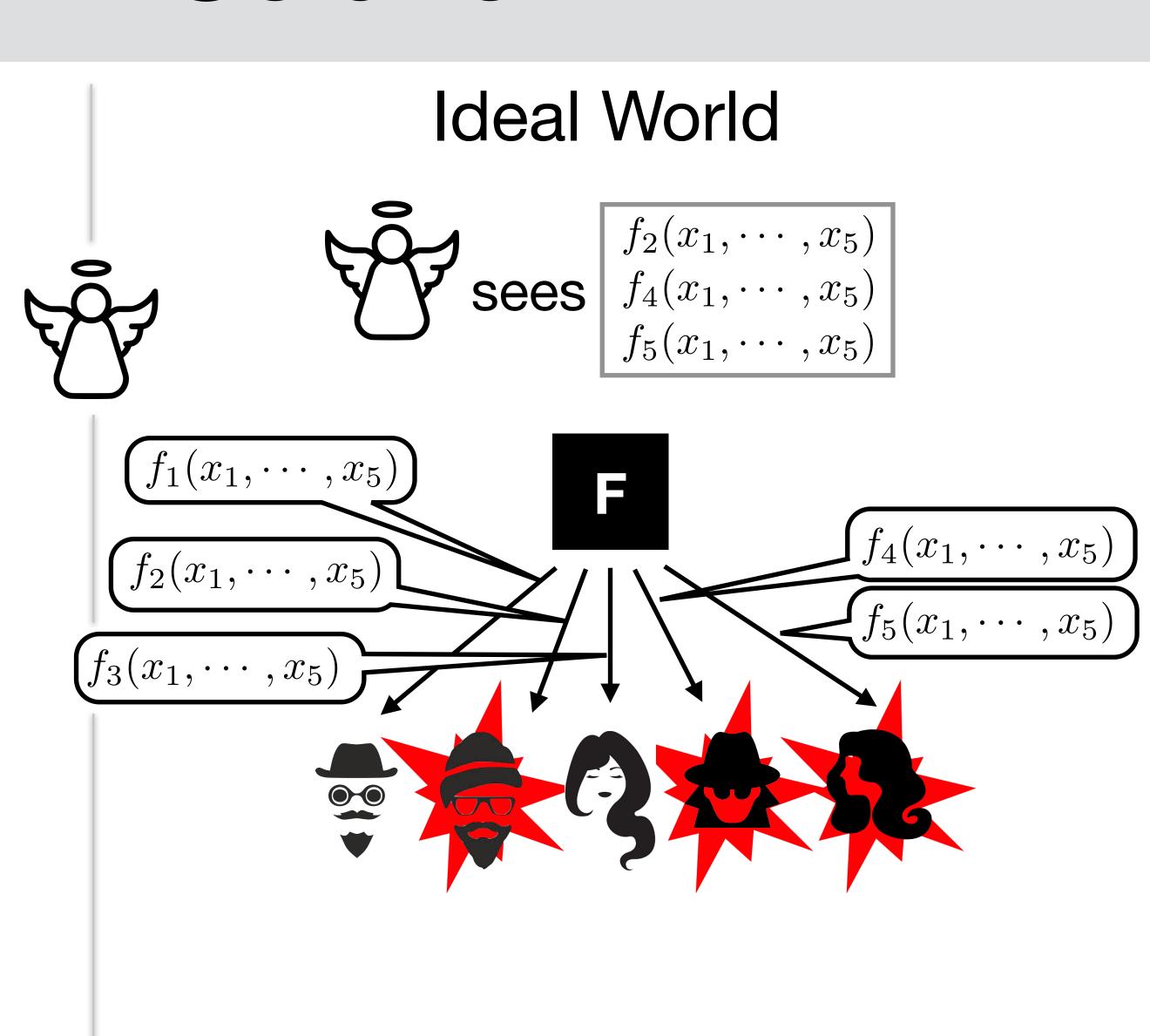




Real World

Different scenario: there is also a functionality in the real world! We call this « hybrid world ».

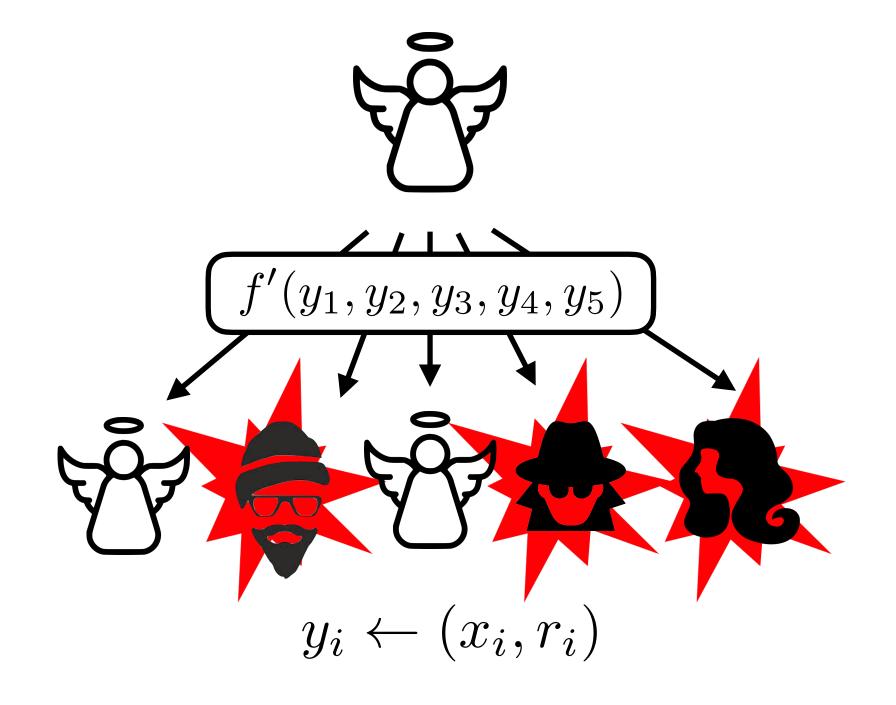


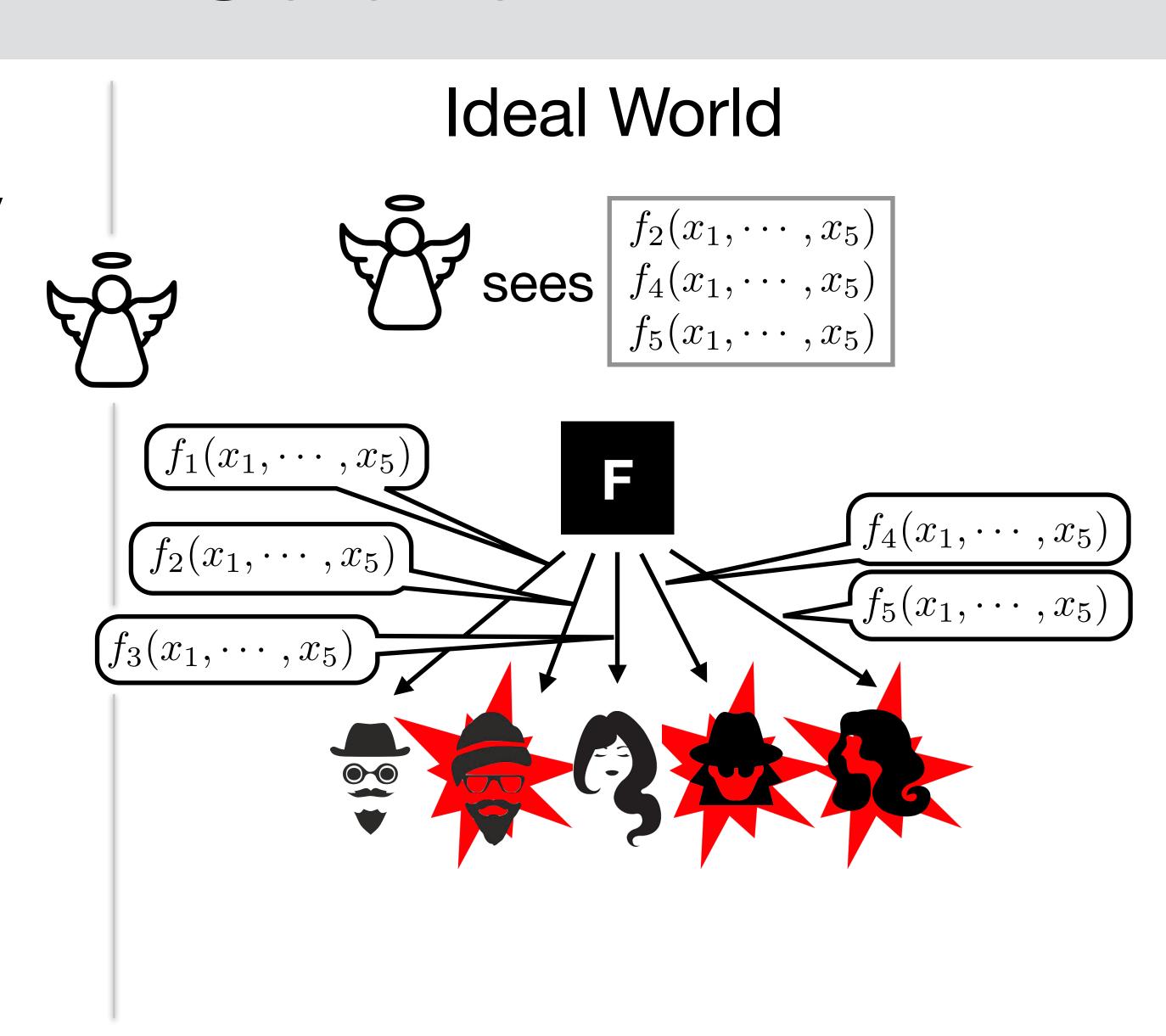


Real World

Different scenario: there is also a functionality in the real world! We call this « hybrid world ».

-> The simulator emulates **F**'.

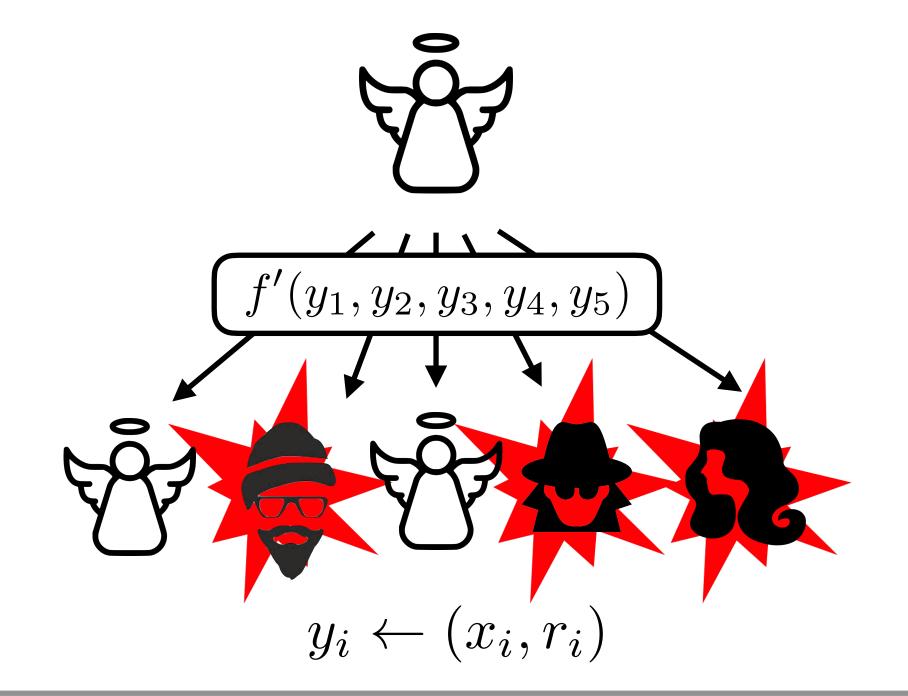




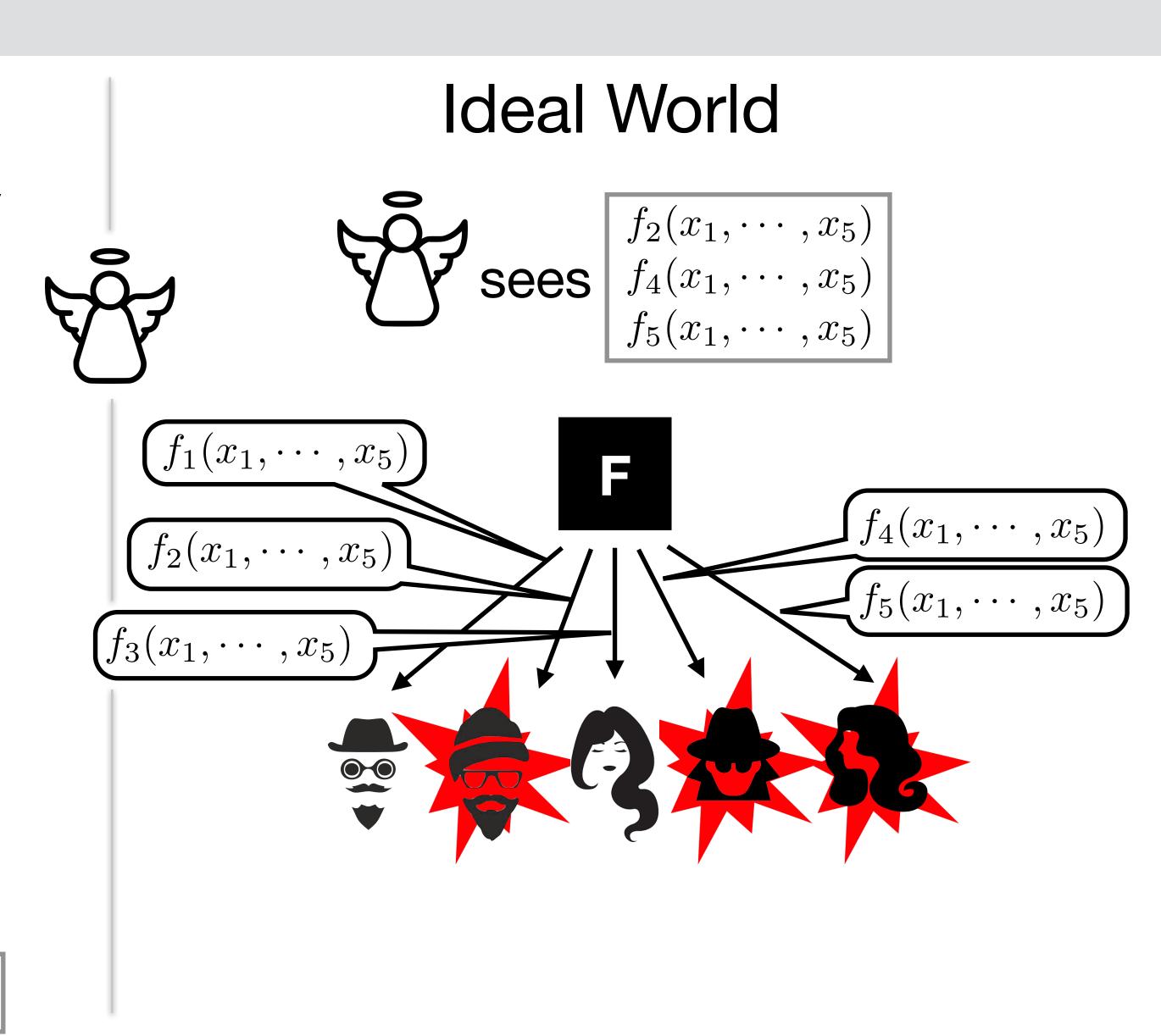
Real World

Different scenario: there is also a functionality in the real world! We call this « hybrid world ».

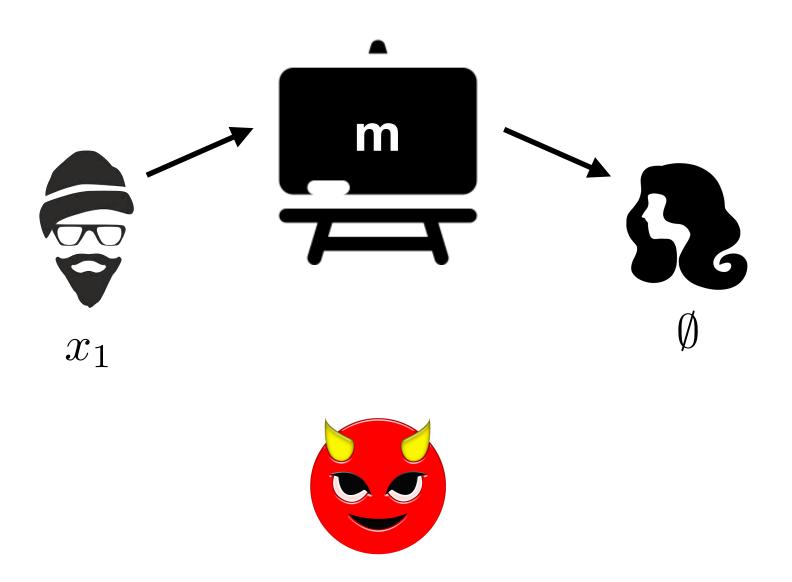
-> The simulator emulates **F**'.



Output: (random, $f_2(x_1, \dots, x_5)$, random, ...)



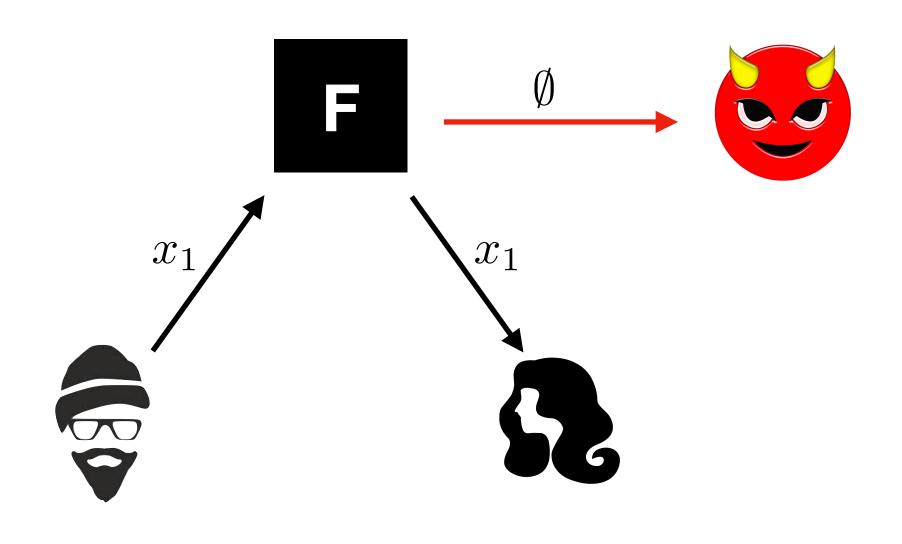
Real World



Real Behavior

- Blackboard model (public communication)
- No corruption (but the adversary sees the board)

Ideal World



Ideal Behavior

- The sender sends his input to F
- F sends it to the receiver; no leakage.

Real World Any idea how to do that?

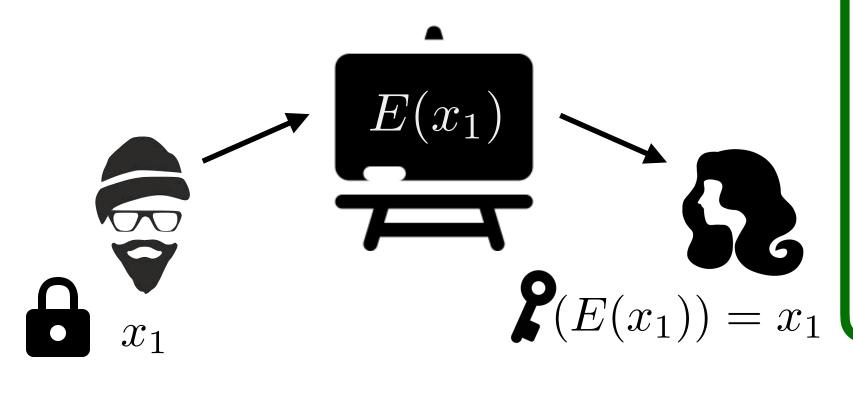
Real Behavior

- Blackboard model (public communication)
- No corruption (but the adversary sees the board)

Ideal Behavior

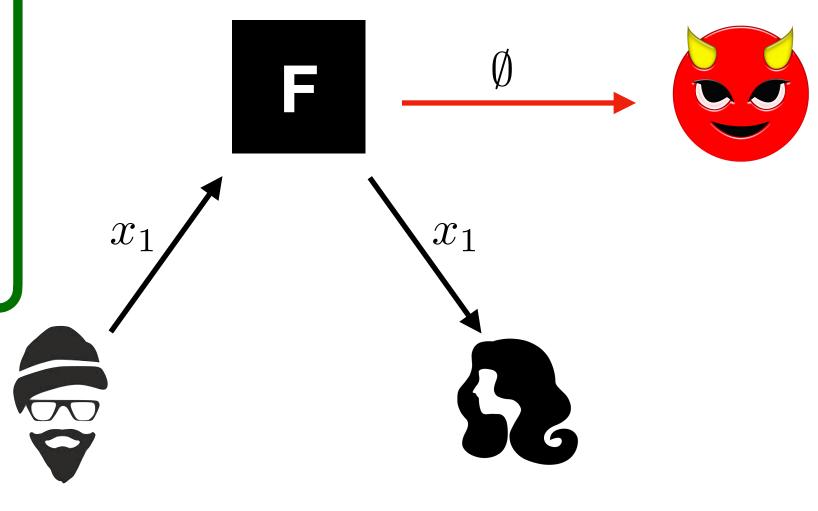
- The sender sends his input to F
- F sends it to the receiver; no leakage.

Real World



E = IND-CPA secure encryption scheme. Sender message: input encrypted with the public key of the receiver.

Ideal World



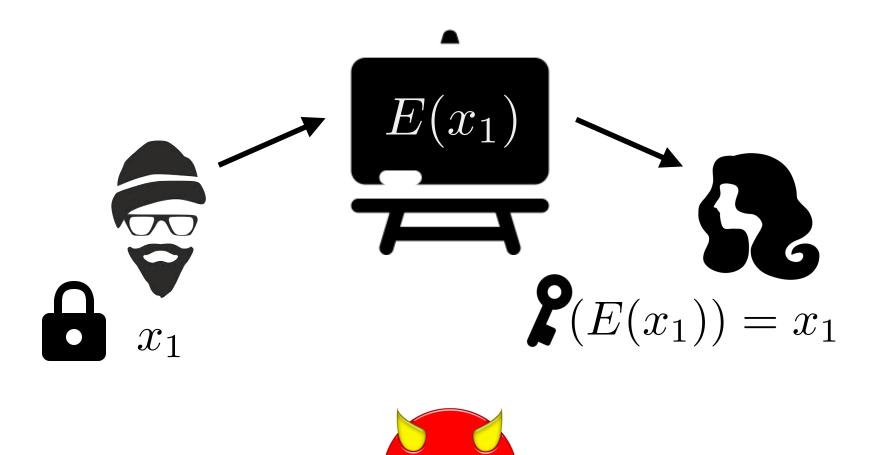
Real Behavior

- Blackboard model (public communication)
- No corruption (but the adversary sees the board)

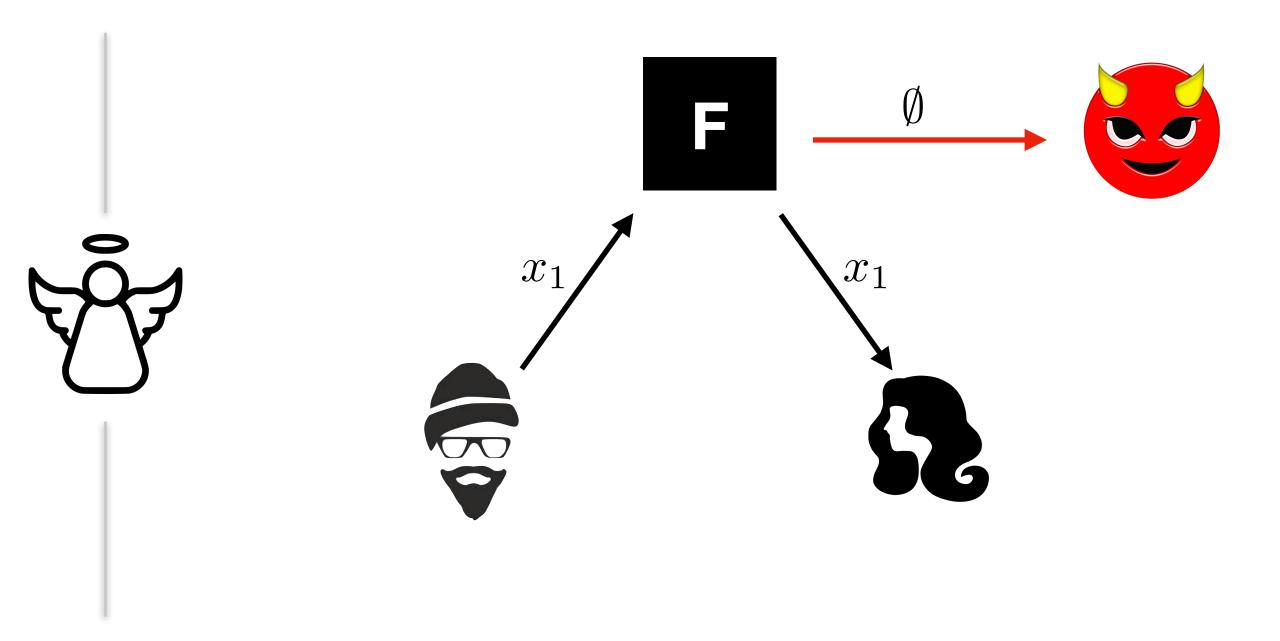
Ideal Behavior

- The sender sends his input to F
- F sends it to the receiver; no leakage.

Real World



Ideal World



Simulation

Real World Ideal World

Real Behavior Simulation Ideal Behavior

Simulating sis easy: generates a public key honestly.

Real World Ideal World

Real Behavior Simulation Ideal Behavior

Simulating $\$ is easy: $\$ generates a public key $\$ honestly. Simulating $\$ is harder, since $\$ does not know x_1 .

What does the simulator write on the board?

Real World Ideal World

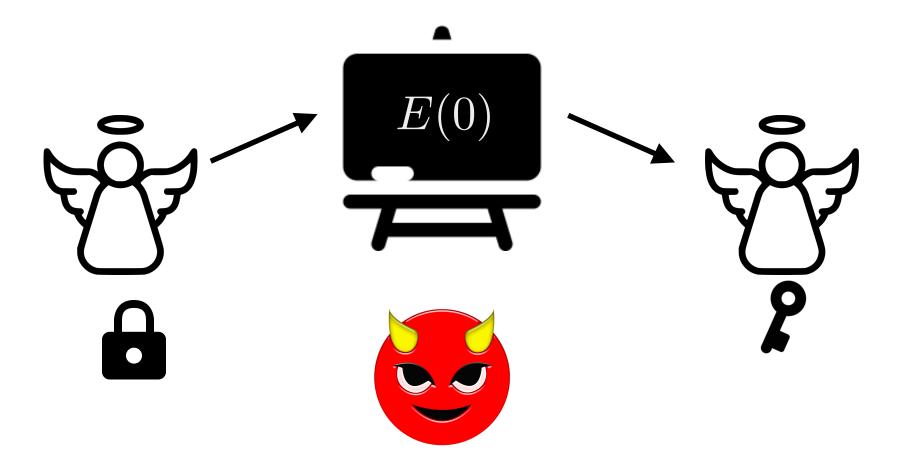
Simulating \$\frac{1}{2}\$ is easy: \$\frac{1}{2}\$ generates a public key \$\frac{1}{2}\$ honestly.

Simulation

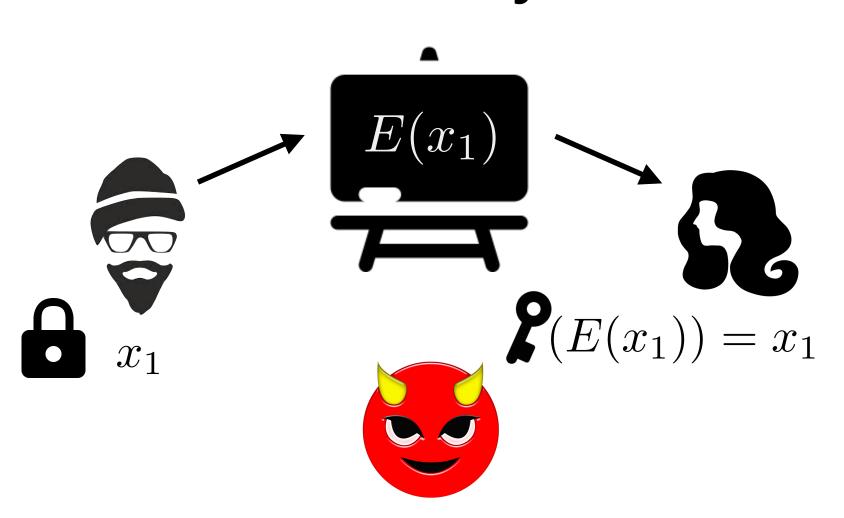
Ideal Behavior

Real Behavior

Simulation

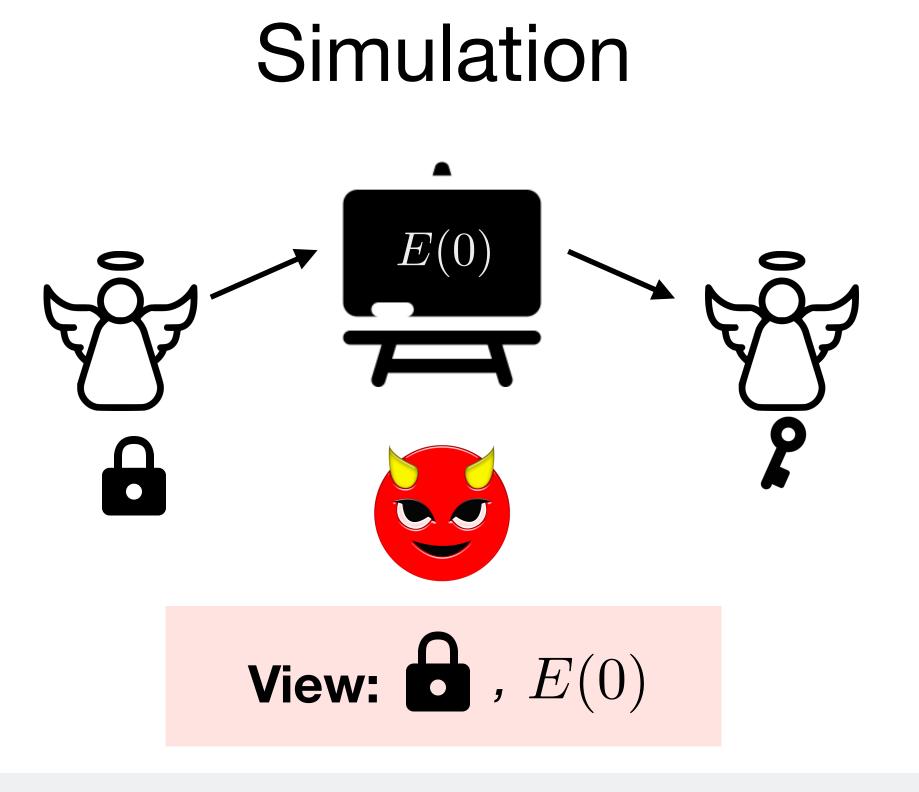


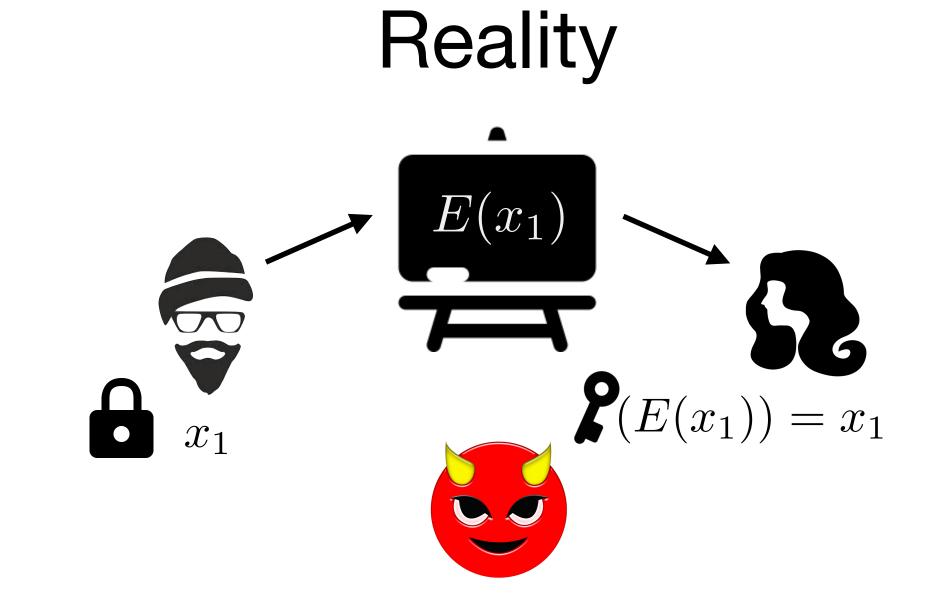
Reality



Simulation

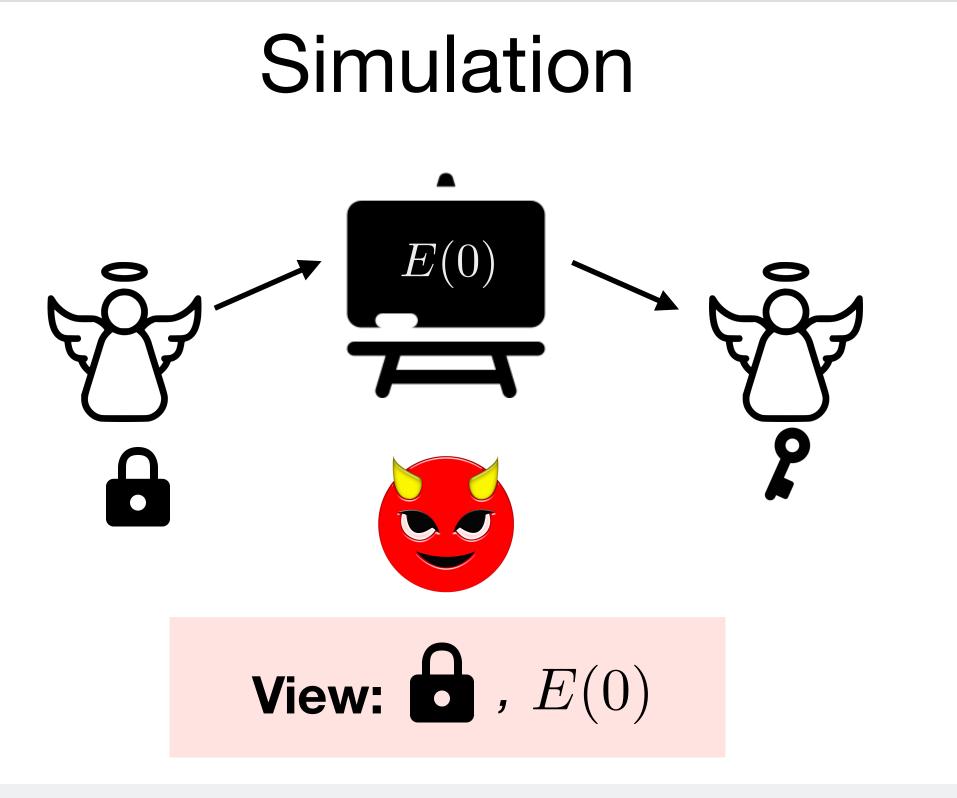
Simulating $\$ is easy: $\$ generates a public key $\$ honestly. Simulating $\$ is harder, since $\$ does not know x_1 .

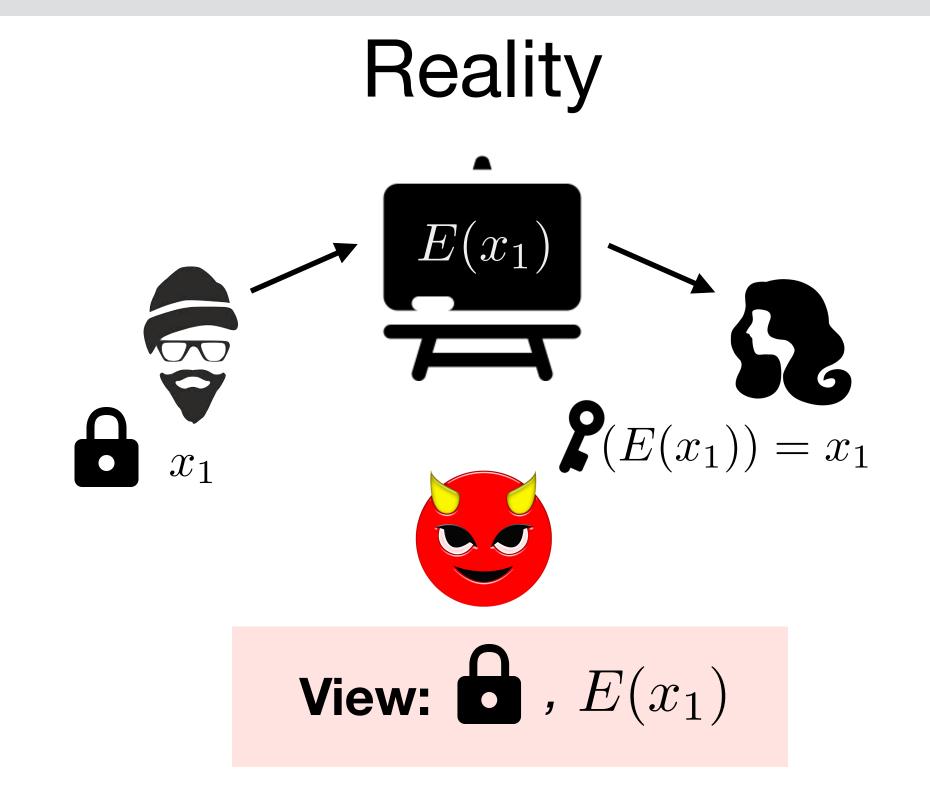




Simulation

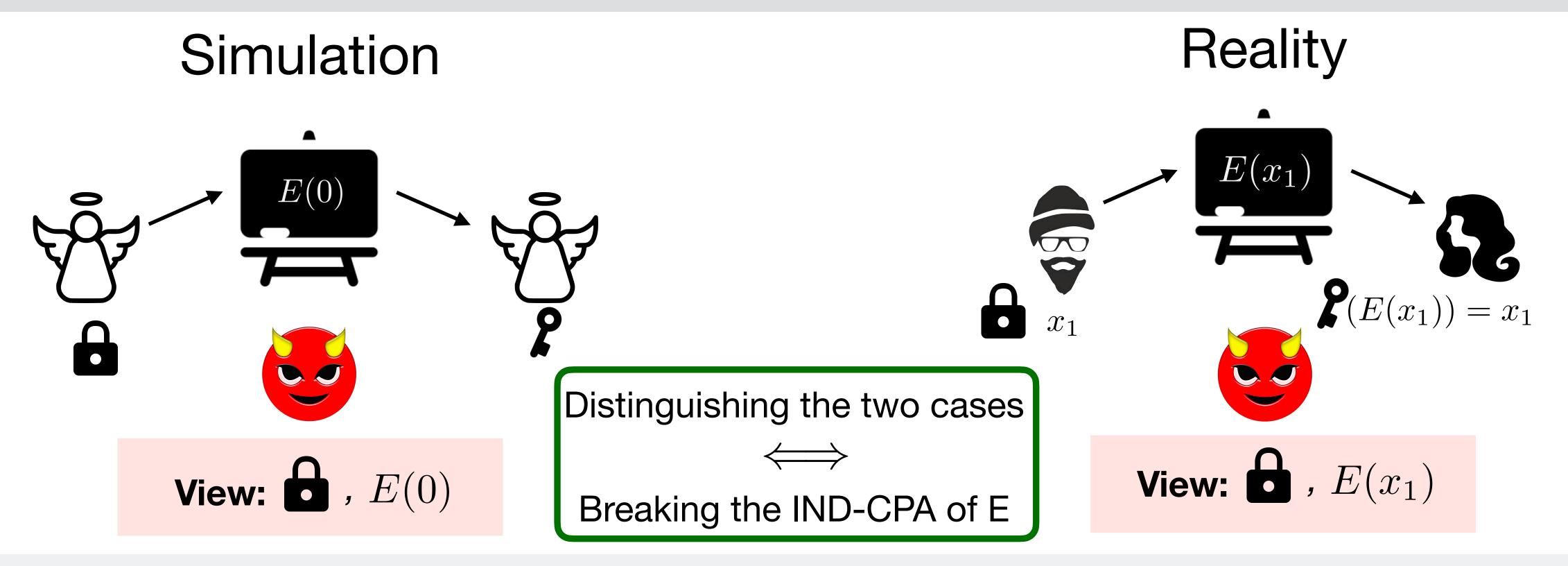
Simulating $\$ is easy: $\$ generates a public key $\$ honestly. Simulating $\$ is harder, since $\$ does not know x_1 .





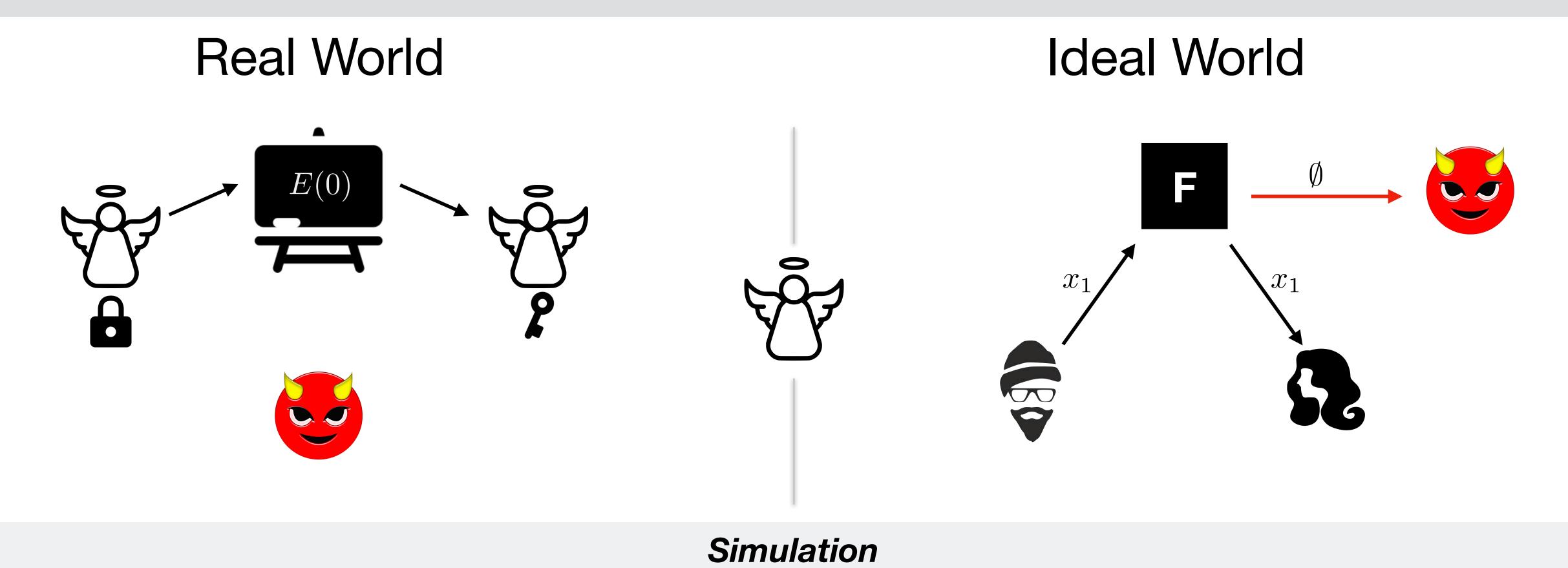
Simulation

Simulating $\$ is easy: $\$ generates a public key $\$ honestly. Simulating $\$ is harder, since $\$ does not know x_1 .

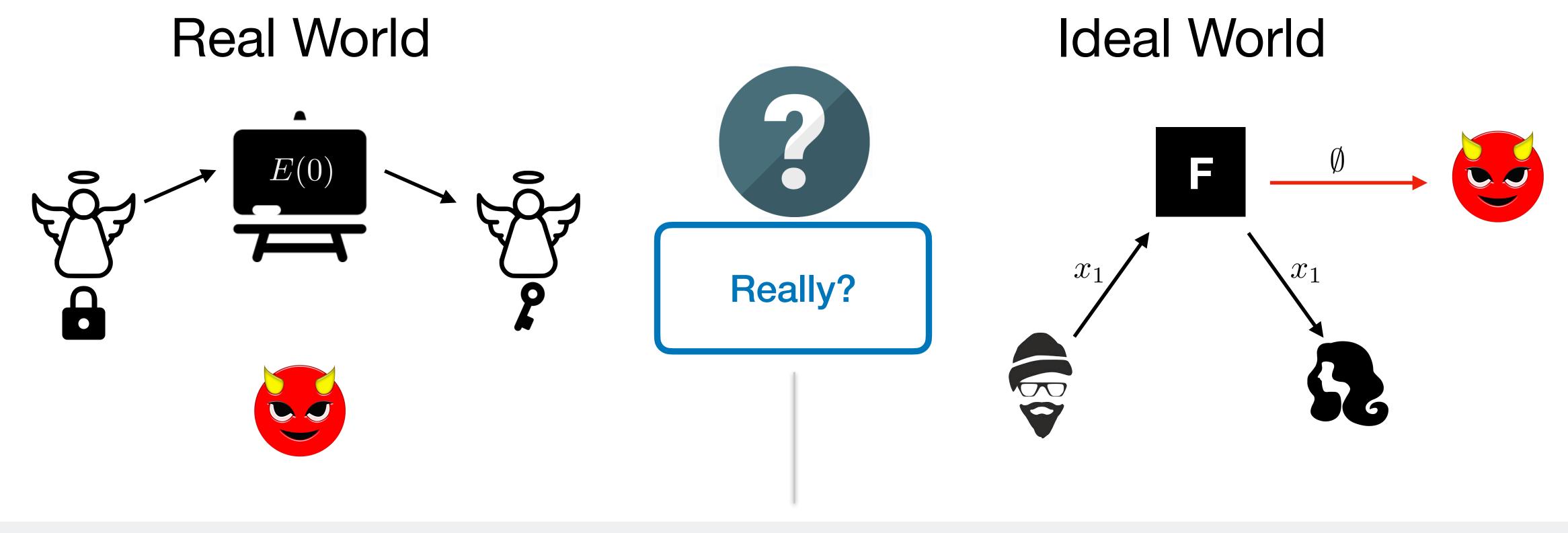


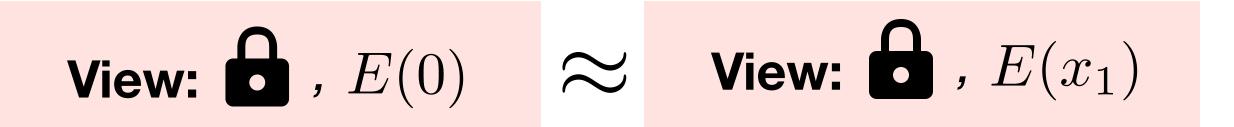
Simulation

Simulating $\$ is easy: $\$ generates a public key $\$ honestly. Simulating $\$ is harder, since $\$ does not know x_1 .



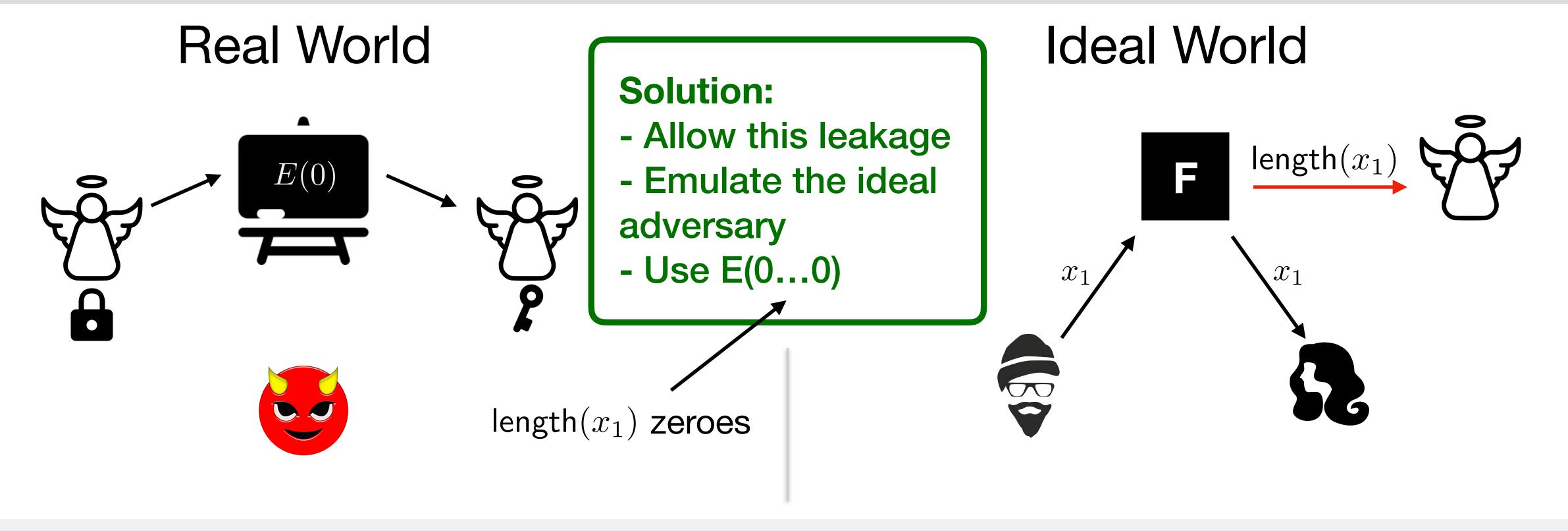
The simulation is indistinguishable from the real protocol if E is IND-CPA secure, hence the protocol securely *emulates* the ideal functionality F under the assumption that E is IND-CPA secure.



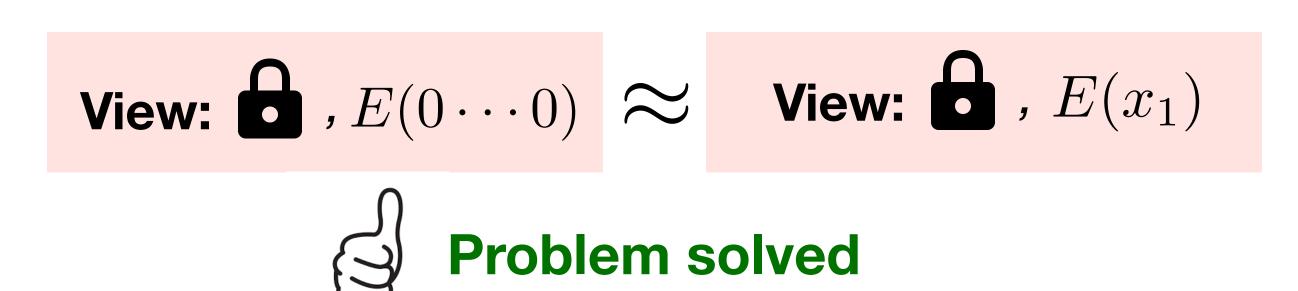


Simulation

Cannot work: the plaintexts do not have the same size!



Simulation

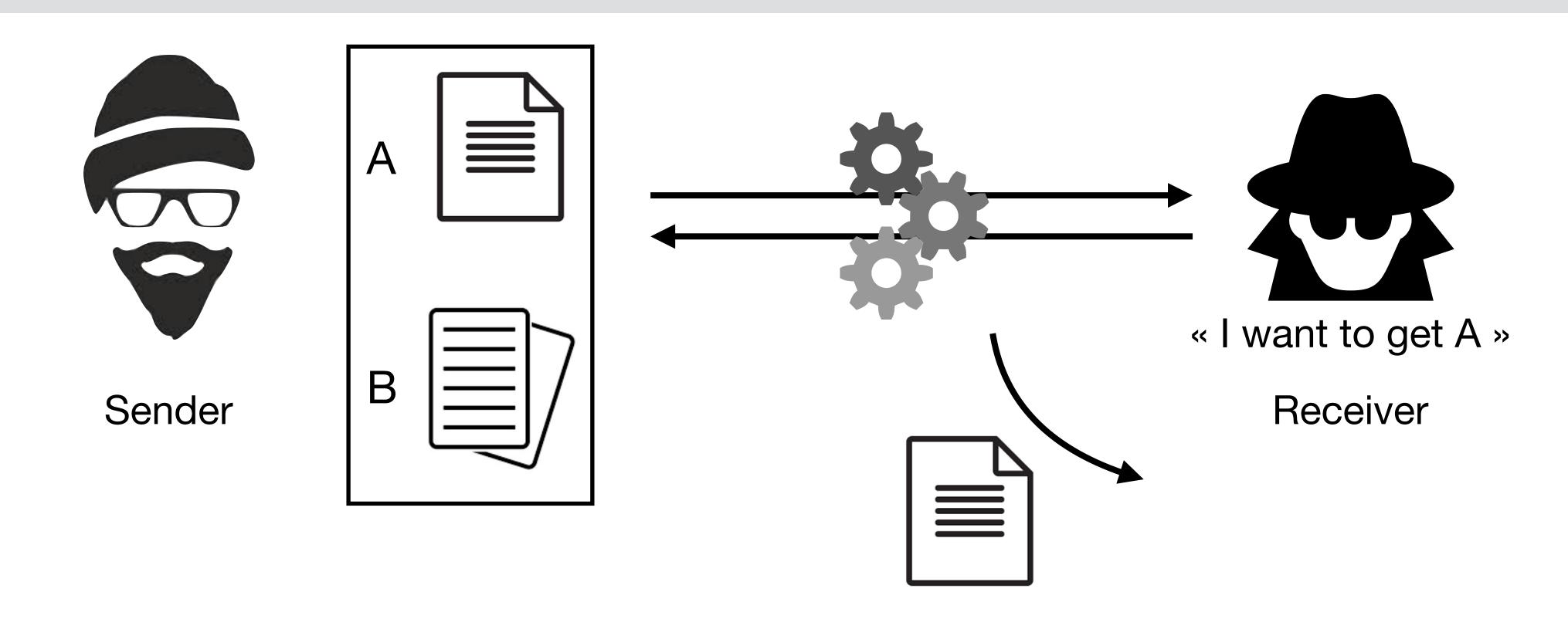


Sender (s_0,s_1)

Goal:

- The receiver learns S_b
- The sender learns nothing about b
- The receiver learns nothing about S_{1-b}

Receiver
Selection bit b



A (minimalistic) version of symmetrically private download from a database held by a server: the client wants to retrieve an item (but does not want to reveal which one), and the server wants to keep all other items private.

Sender (s_0,s_1)

Receiver
Selection bit b

Sender Receiver (s_0,s_1) We will: Selection bit b

- Provide a full construction of OT, starting from an IND-CPA encryption scheme satisfying additional special properties
- Formally prove that the construction is secure.

The following closely follows the lecture notes of Jonathan Kat:

https://www.cs.umd.edu/~jkatz/gradcrypto2/f13/lecture3.pdf

Reminder:

A public key encryption scheme \mathcal{E} consists of three probabilistic polynomial time algorithms (Gen, Enc, Dec) where

- Gen is the key generation algorithm that on input 1^n , where n is the security parameter, outputs the public key pk and the secret key sk,
- Enc is the encryption algorithm that on input a message m and the public key pk outputs a ciphertext $c \leftarrow \mathsf{Enc}_{pk}(m)$,
- Dec is the decryption algorithm that on input a ciphertext c and secret key sk outputs the message $m = \mathsf{Dec}_{sk}(c)$.

Standard (though you might have seen another - equivalent - formulation)

```
Definition 1[CPA security] Let X_n(m) \stackrel{\text{def}}{=} \{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(m))\} and Y_n(m) \stackrel{\text{def}}{=} \{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(0^{|m|}))\} for every m in the message space. A public key encryption scheme is secure against chosen plaintext attacks (CPA-secure) if the ensembles \{X_n\} and \{Y_n\} are computationally indistinguishable.
```

For the security of the OT protocol, we also require that the encryption scheme have obliviously sampleable public keys. An encryption scheme $\mathcal{E} = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ has obliviously sampleable public keys if

- there exists a polynomial time algorithm Samp such that $\{\mathsf{Samp}(1^n)\}$ is identically distributed to $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : pk\}$
- there exists a polynomial time algorithm pkSim such that $\{r \leftarrow \{0,1\}^n; pk = \mathsf{Samp}(1^n; r) : (pk,r)\}$ and $\{(pk,sk) \leftarrow \mathsf{Gen}(1^n); r \leftarrow \mathsf{pkSim}(pk) : (pk,r))\}$ are computationally indistinguishable.

Standard (though you might have seen another - equivalent - formulation)

```
Definition 1[CPA security] Let X_n(m) \stackrel{\text{def}}{=} \{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(m))\} and Y_n(m) \stackrel{\text{def}}{=} \{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(0^{|m|}))\} for every m in the message space. A public key encryption scheme is secure against chosen plaintext attacks (CPA-secure) if the ensembles \{X_n\} and \{Y_n\} are computationally indistinguishable.
```

For the security of the OT protocol, we also require that the encryption scheme have obliviously sampleable public keys. An encryption scheme $\mathcal{E} = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ has obliviously sampleable public keys if

- there exists a polynomial time algorithm Samp such that $\{\mathsf{Samp}(1^n)\}$ is identically distributed to $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : pk\}$ (This alone would be trivial)
- there exists a polynomial time algorithm pkSim such that $\{r \leftarrow \{0,1\}^n; pk = \mathsf{Samp}(1^n; r) : (pk,r)\}$ and $\{(pk,sk) \leftarrow \mathsf{Gen}(1^n); r \leftarrow \mathsf{pkSim}(pk) : (pk,r))\}$ are computationally indistinguishable.

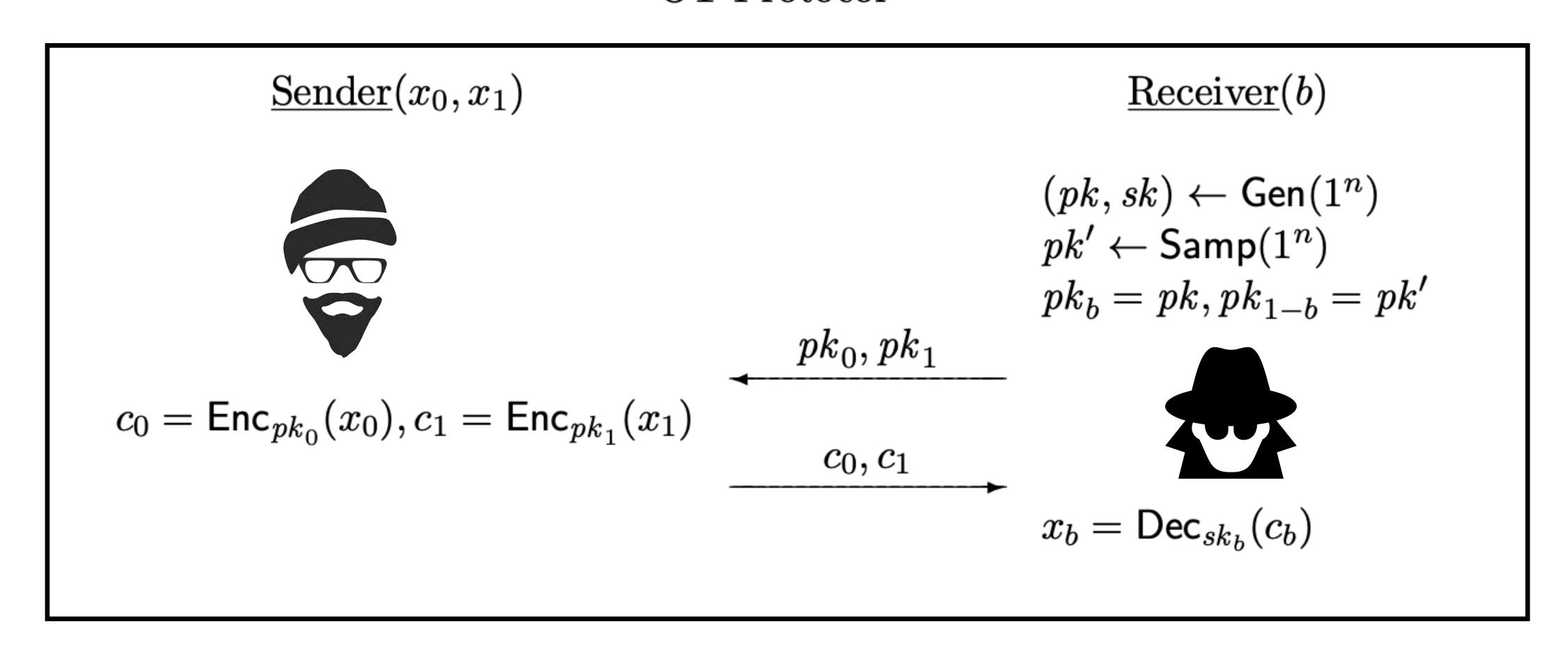
Standard (though you might have seen another - equivalent - formulation)

```
Definition 1[CPA security] Let X_n(m) \stackrel{\text{def}}{=} \{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(m))\} and Y_n(m) \stackrel{\text{def}}{=} \{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(0^{|m|}))\} for every m in the message space. A public key encryption scheme is secure against chosen plaintext attacks (CPA-secure) if the ensembles \{X_n\} and \{Y_n\} are computationally indistinguishable.
```

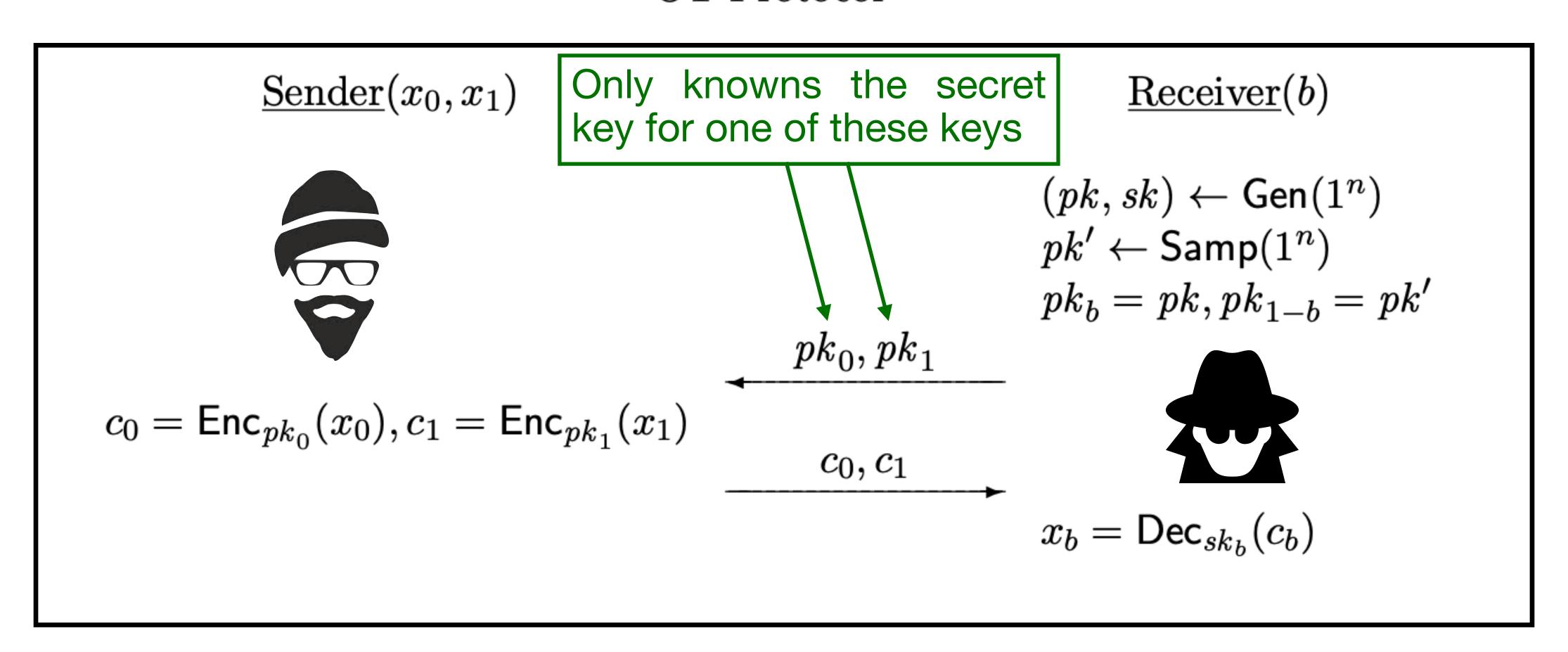
For the security of the OT protocol, we also require that the encryption scheme have obliviously sampleable public keys. An encryption scheme $\mathcal{E} = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ has obliviously sampleable public keys if

- there exists a polynomial time algorithm Samp such that $\{Samp(1^n)\}$ is identically distributed to $\{(pk, sk) \leftarrow Gen(1^n) : pk\}$ (This alone would be trivial)
- there exists a polynomial time algorithm pkSim such that $\{r \leftarrow \{0,1\}^n; pk = \mathsf{Samp}(1^n; r) : (pk,r)\}$ and $\{(pk,sk) \leftarrow \mathsf{Gen}(1^n); r \leftarrow \mathsf{pkSim}(pk) : (pk,r))\}$ are computationally indistinguishable. (This makes it non-trivial)

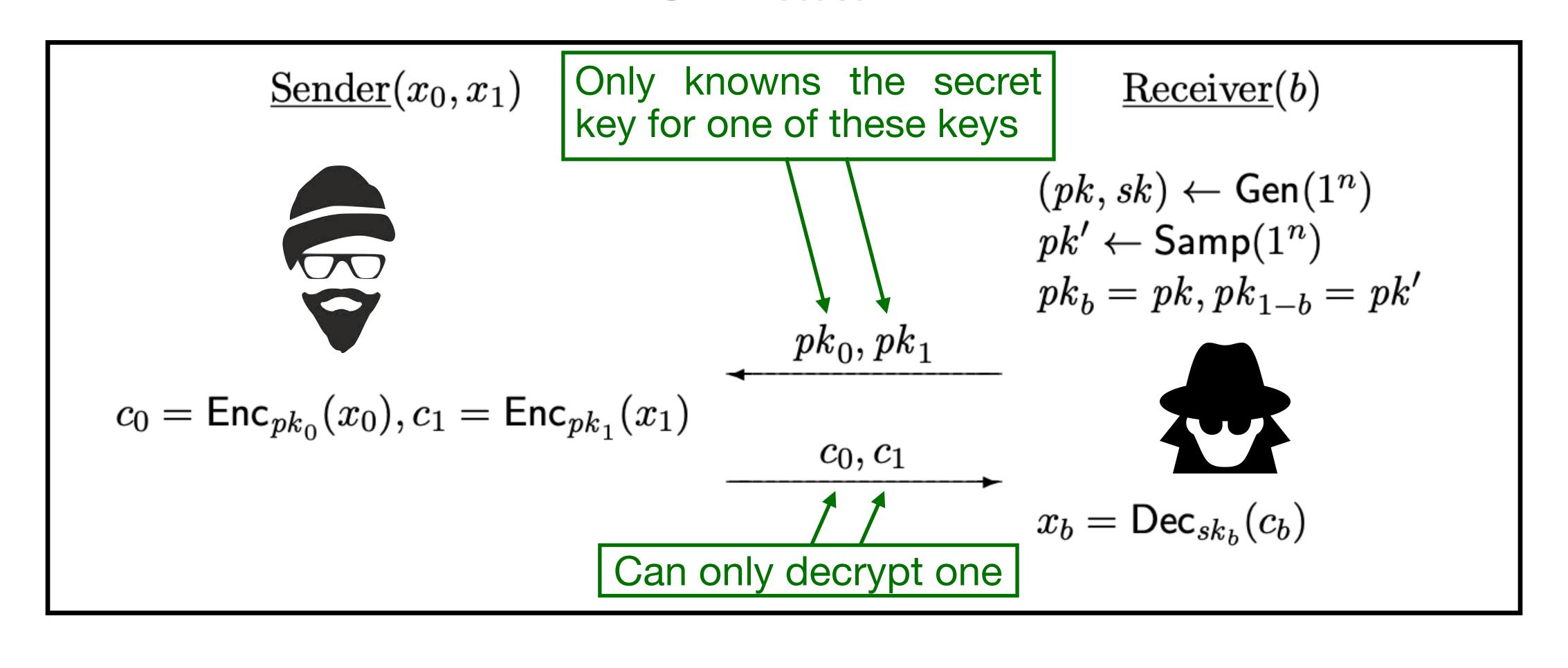
OT Protocol



OT Protocol



OT Protocol



Security Against the Sender

$S(1^n, x_0, x_1)$:

- 1. Run $(pk_0, sk_0) \leftarrow \text{Gen}(1^n)$ and $(pk_1, sk_1) \leftarrow \text{Gen}(1^n)$
- 2. Choose randomness r_0, r_1 for the two encryptions.
- 3. Output $(pk_0, pk_1, r_0, r_1, x_0, x_1)$.

$\operatorname{View}_{\mathrm{sender}}^{\pi}(1^n, x_0, x_1)$:

- 1. The sender receives $(pk_b, sk_b) \leftarrow \mathsf{Gen}(1^n)$ and $pk_{1-b} \leftarrow \mathsf{Samp}(1^n)$,
- 2. the randomness r_0, r_1 for the two encryptions.
- 3. Hence, the sender's view consists of $(pk_0, pk_1, r_0, r_1, x_0, x_1)$.

Security Against the Sender

$S(1^n, x_0, x_1)$:

- 1. Run $(pk_0, sk_0) \leftarrow \text{Gen}(1^n)$ and $(pk_1, sk_1) \leftarrow \text{Gen}(1^n)$
- 2. Choose randomness r_0, r_1 for the two encryptions.
- 3. Output $(pk_0, pk_1, r_0, r_1, x_0, x_1)$.

$\operatorname{View}_{\mathrm{sender}}^{\pi}(1^n, x_0, x_1)$:

- 1. The sender receives $(pk_b, sk_b) \leftarrow \mathsf{Gen}(1^n)$ and $pk_{1-b} \leftarrow \mathsf{Samp}(1^n)$,
- 2. the randomness r_0, r_1 for the two encryptions.
- 3. Hence, the sender's view consists of $(pk_0, pk_1, r_0, r_1, x_0, x_1)$.

 $\mathsf{Samp}(1^n)$ and $\mathsf{Gen}(1^n)$ are identically distributed.

Security Against the Receiver

$\mathcal{S}(1^n,b,x_b)$:

- 1. Choose randomness r_{Gen} and compute $(pk_b, sk_b) \leftarrow \text{Gen}(1^n)$.
- 2. Run $(pk_{1-b}, sk_{1-b}) \leftarrow \text{Gen}(1^n)$ and compute $r_{\text{Samp}} \leftarrow \text{pkSim}(pk_{1-b})$.
- 3. Set $c_b \leftarrow \mathsf{Enc}_{pk_b}(x_b)$ and $c_{1-b} \leftarrow \mathsf{Enc}_{pk_{1-b}}(0^n)$.
- 4. Output $(r_{\text{Gen}}, r_{\text{Samp}}, c_0, c_1, b, x_b)$.

$\operatorname{View}_{\operatorname{receiver}}^{\pi}(1^n,b)$:

- 1. The receiver chooses randomness $r_{\text{Gen}}, r_{\text{Samp}}$ and computes $(pk_b, sk_b) \leftarrow \text{Gen}(1^n; r_{\text{Gen}})$ and $pk_{1-b} \leftarrow \text{Samp}(1^n; r_{\text{Samp}})$.
- 2. The receiver receives $c_b = \operatorname{Enc}_{pk_b}(x_b), c_{1-b} = \operatorname{Enc}_{pk_{1-b}}(c_{1-b}).$
- 3. Hence, the receiver's view consists of $(r_{\text{Gen}}, r_{\text{Samp}}, c_0, c_1)$.

Security Against the Receiver

$\mathcal{S}(1^n,b,x_b)$:

- 1. Choose randomness r_{Gen} and compute $(pk_b, sk_b) \leftarrow \text{Gen}(1^n)$.
- 2. Run $(pk_{1-b}, sk_{1-b}) \leftarrow \text{Gen}(1^n)$ and compute $r_{\text{Samp}} \leftarrow \text{pkSim}(pk_{1-b})$.
- 3. Set $c_b \leftarrow \mathsf{Enc}_{pk_b}(x_b)$ and $c_{1-b} \leftarrow \mathsf{Enc}_{pk_{1-b}}(0^n)$.
- 4. Output $(r_{\text{Gen}}, r_{\text{Samp}}, c_0, c_1, b, x_b)$.

\approx

$\operatorname{View}_{\operatorname{receiver}}^{\pi}(1^n,b)$:

- 1. The receiver chooses randomness $r_{\text{Gen}}, r_{\text{Samp}}$ and computes $(pk_b, sk_b) \leftarrow \text{Gen}(1^n; r_{\text{Gen}})$ and $pk_{1-b} \leftarrow \text{Samp}(1^n; r_{\text{Samp}})$.
- 2. The receiver receives $c_b = \operatorname{Enc}_{pk_b}(x_b), c_{1-b} = \operatorname{Enc}_{pk_{1-b}}(c_{1-b}).$
- 3. Hence, the receiver's view consists of $(r_{\text{Gen}}, r_{\text{Samp}}, c_0, c_1)$.

Security Against the Receiver

$\operatorname{Hybrid}(1^n, b)$:

- 1. Choose randomness r_{Gen} and compute $(pk_b, sk_b) \leftarrow \text{Gen}(1^n; r_{\text{Gen}})$.
- 2. Compute $pk_{1-b} \leftarrow \text{Gen}(1^n)$ and run pkSim to obtain $r_{\text{Samp}} \leftarrow \text{pkSim}(pk_{1-b})$.
- 3. Receive ciphertexts $c_b = \text{Enc}_{pk_b}(x_b), c_{1-b} = \text{Enc}_{pk_{1-b}}(c_{1-b}).$
- 4. Output $(r_{\text{Gen}}, r_{\text{Samp}}, c_0, c_1)$.

By definition of the algorithm pkSim , the distributions $\mathrm{View}_{\mathrm{receiver}}^\pi(1^n, b)$ and $\mathrm{Hybrid}(1^n, b)$ are identical. For distributions $\mathrm{Hybrid}(1^n, b)$ and $\mathcal{S}(1^n, b, x_b)$, the difference is that we replaced the encryption of x_{1-b} with that of 0^n . The proof that these two distributions are computationally indistinguishable follows by reduction from the CPA security of the encryption scheme.

Home Exercise

Prove that ElGamal satisfies the obliviously samplable keys requirement

Reminder:

- there exists a polynomial time algorithm Samp such that $\{\mathsf{Samp}(1^n)\}\$ is identically distributed to $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : pk\}^{-1}$
- there exists a polynomial time algorithm pkSim such that $\{r \leftarrow \{0,1\}^n; pk = \mathsf{Samp}(1^n; r) : (pk,r)\}$ and $\{(pk,sk) \leftarrow \mathsf{Gen}(1^n); r \leftarrow \mathsf{pkSim}(pk) : (pk,r))\}$ are computationally indistinguishable.

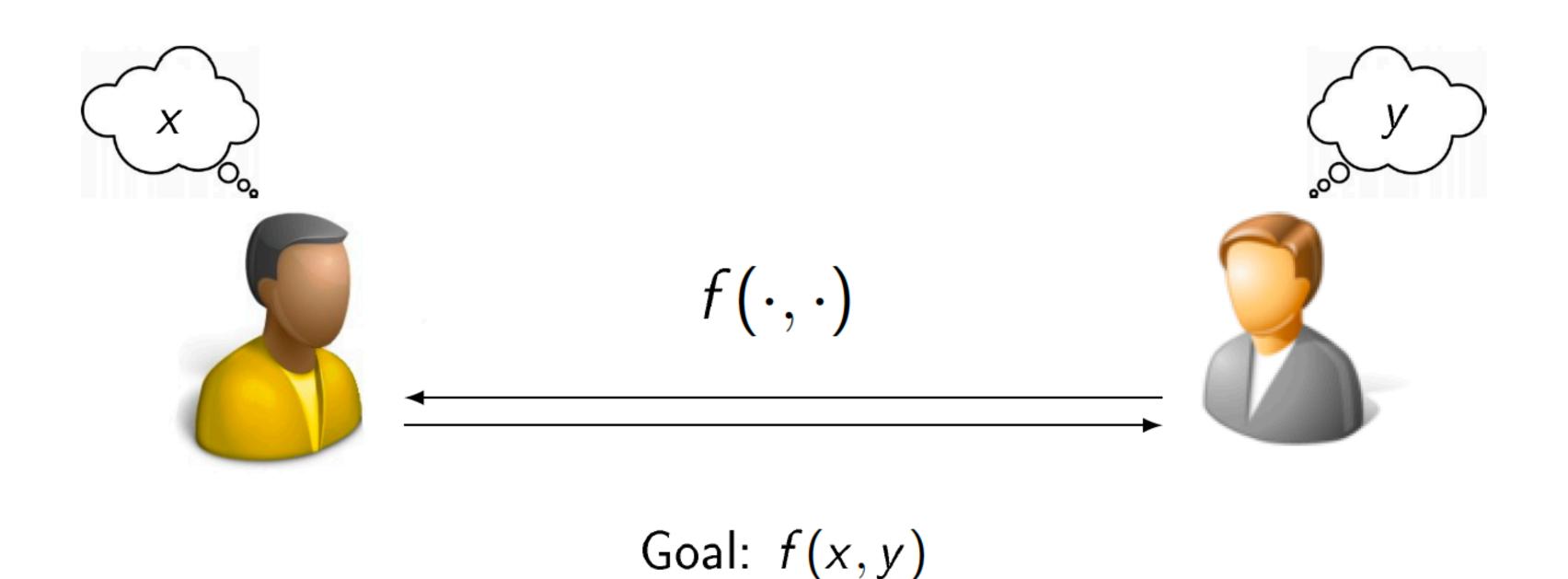
Two-Party Secure Computation for All Functions

Until now, we only addressed special cases of secure computation, for very specific, restricted (two party) functionalities: secure communication and oblivious transfer.

However, a beautiful result of Yao, from 1986, showed that the existence of (private-key) encryption schemes, together with a protocol for oblivious transfer, as we just constructed, suffices to securely compute *all functions* in the two-party setting.

In the following, we will prove this result.

Two-Party Secure Computation for All Functions

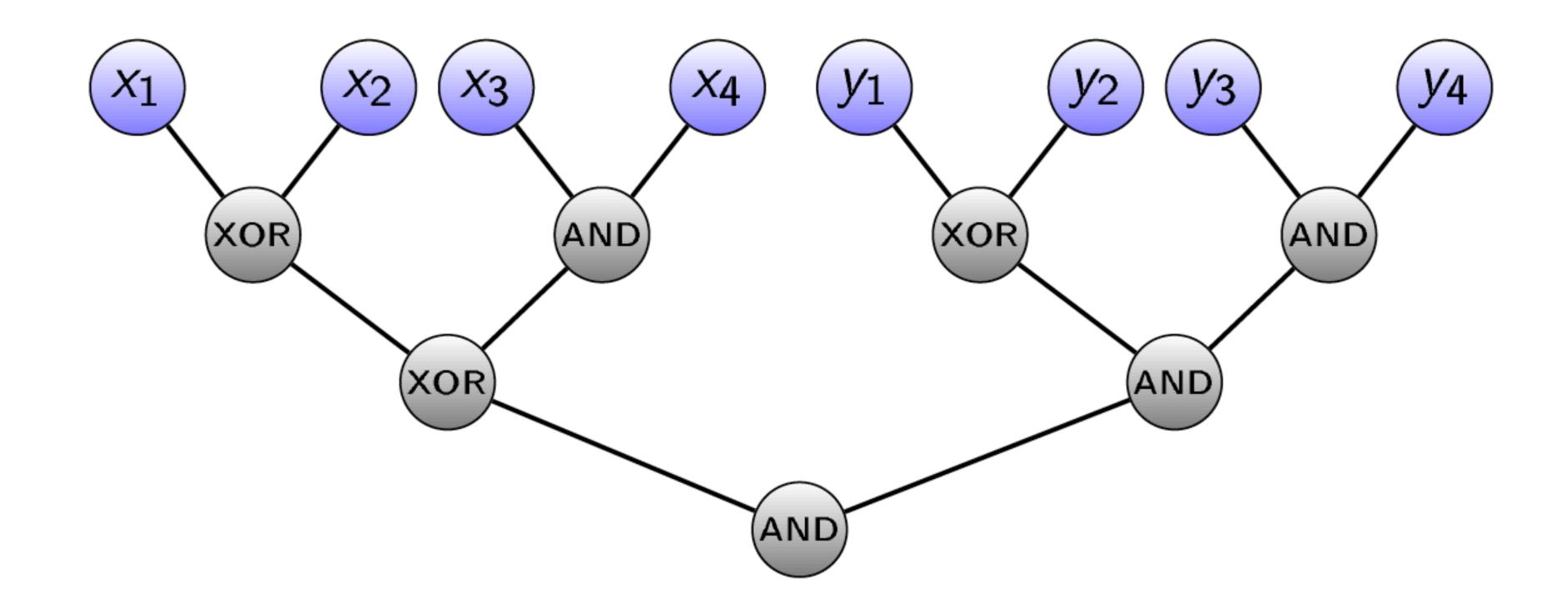


Idea: represent f as a boolean circuit

Building Block I: Boolean Circuits

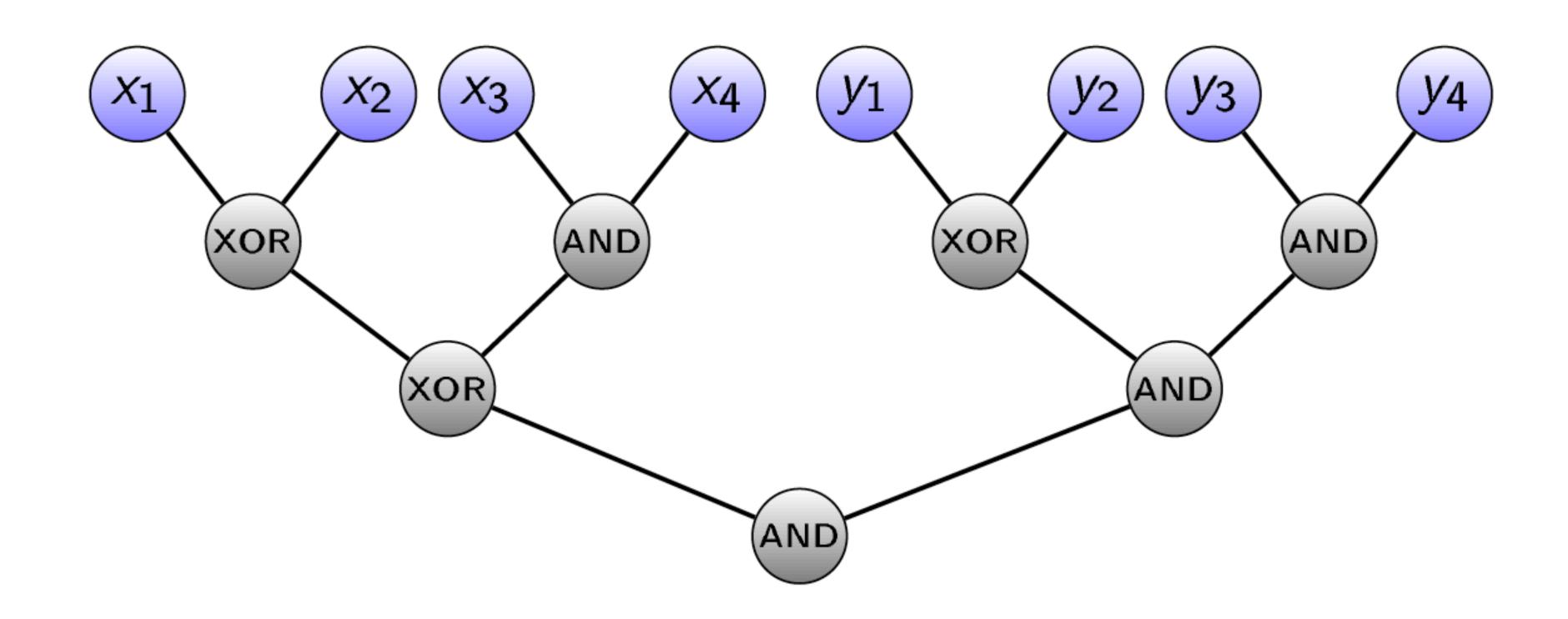
Claim: any polytime-computable function can be computed by a poly size boolean circuit over the {XOR, AND} bases.

Proof: that's how your computer does it.



Building Block I: Boolean Circuits

Idea: « encrypting » the gates such that they can only be evaluated given appropriate keys, and while hiding their exact behavior.



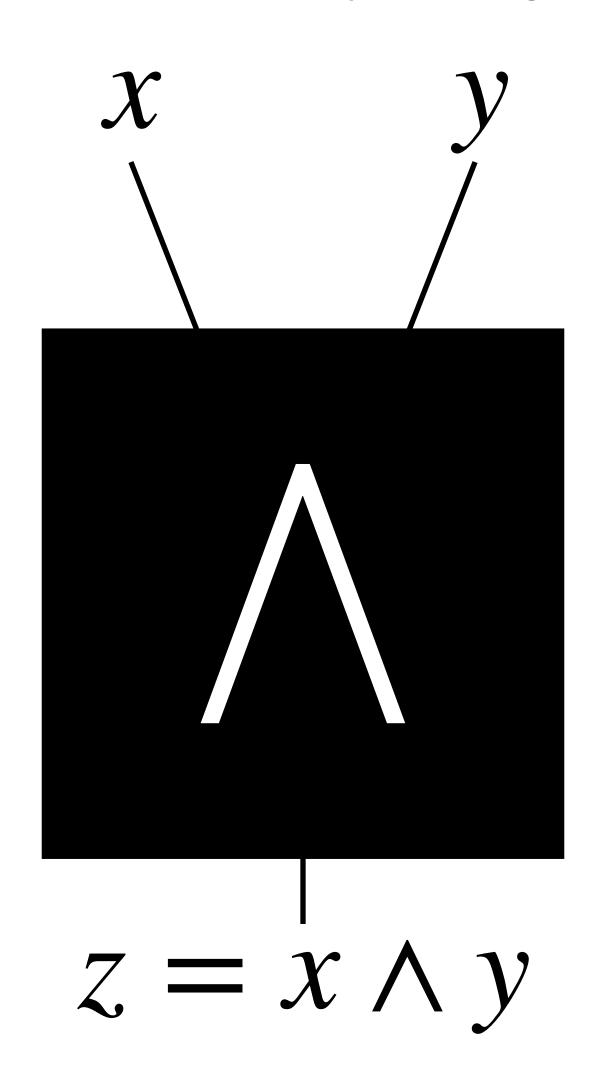
We let (KeyGen, Enc, Dec) be a symmetric encryption scheme with the following properties:

- KeyGen generates a key K
- $\operatorname{Enc}_K(m) \to c$ generates a random encryption of the plaintext m
- $Dec_K(c)$ returns m if $c = Enc_K(m)$
- A decryption of a ciphertext c with a wrong key K' returns « error » (hence, it reveals that a wrong key was used)

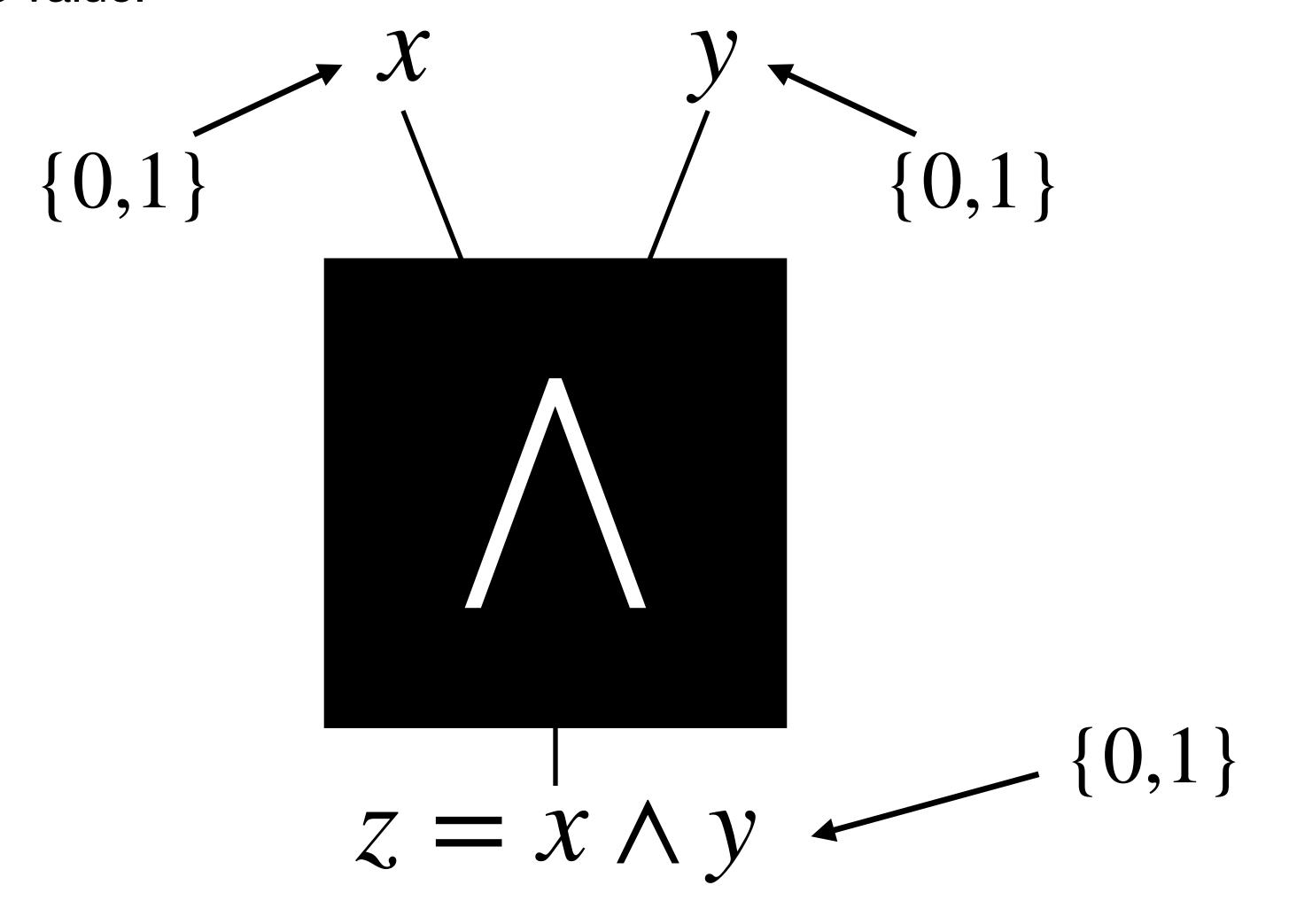
We let (KeyGen, Enc, Dec) be a symmetric encryption scheme with the following properties:

- KeyGen generates a key K
- $\operatorname{Enc}_K(m) \to c$ generates a random encryption of the plaintext m
- $Dec_K(c)$ returns m if $c = Enc_K(m)$
- A decryption of a ciphertext c with a wrong key K^\prime returns « error » (hence, it reveals that a wrong key was used)

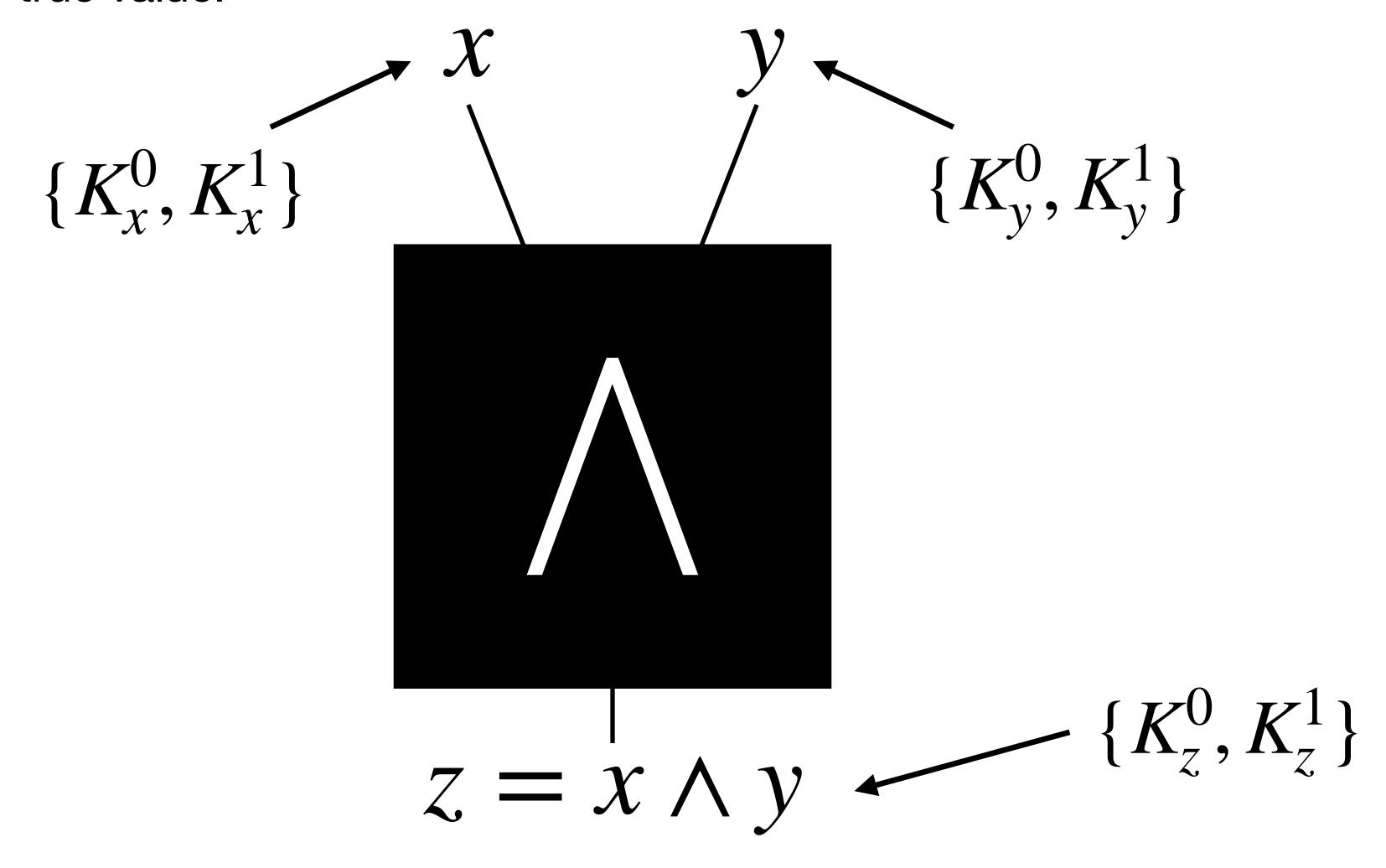
We will use this encryption scheme to « encrypt » logical gates.



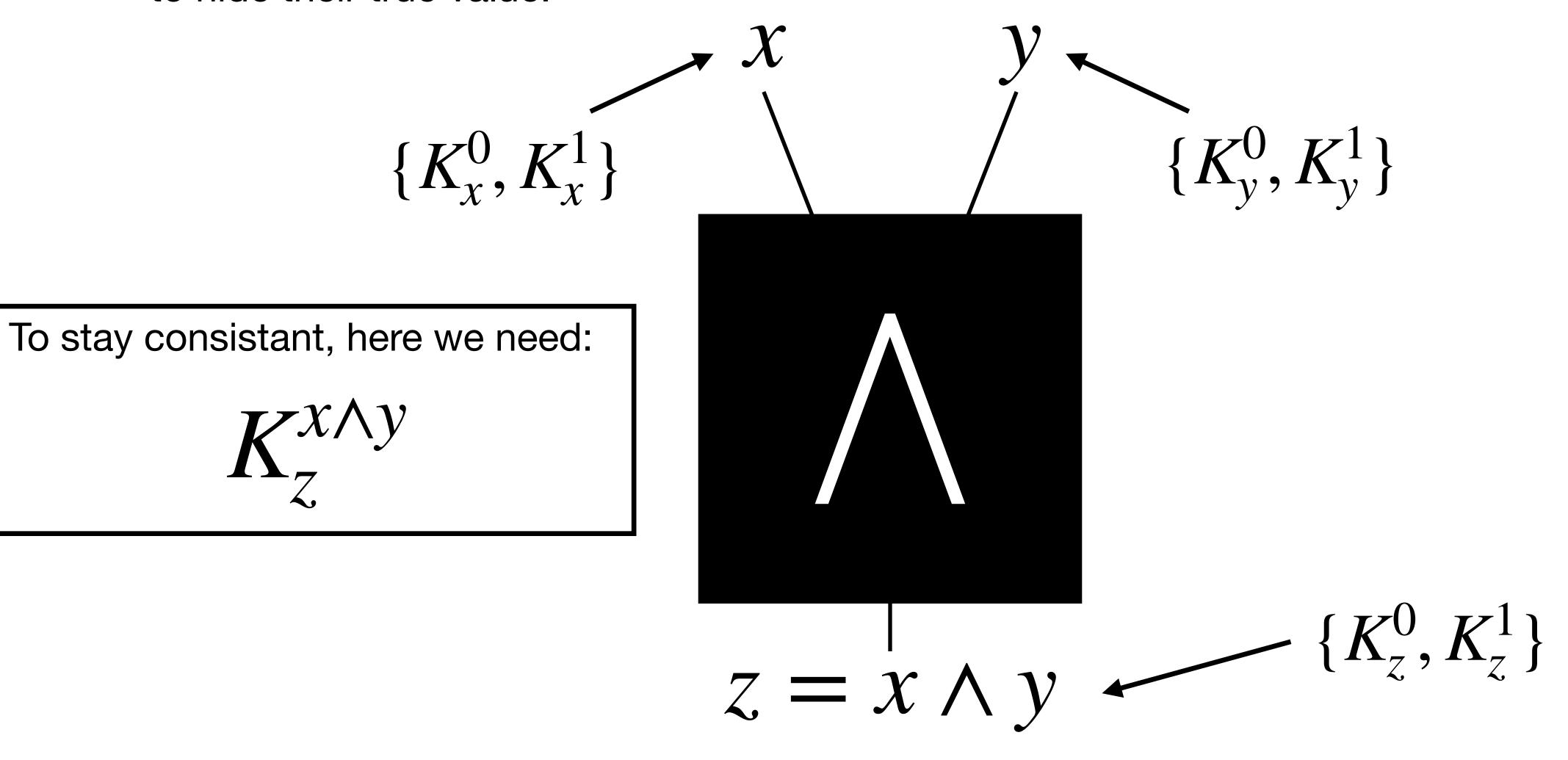
The inputs and outputs are bits, but we will « represent » them using random keys, to hide their true value:



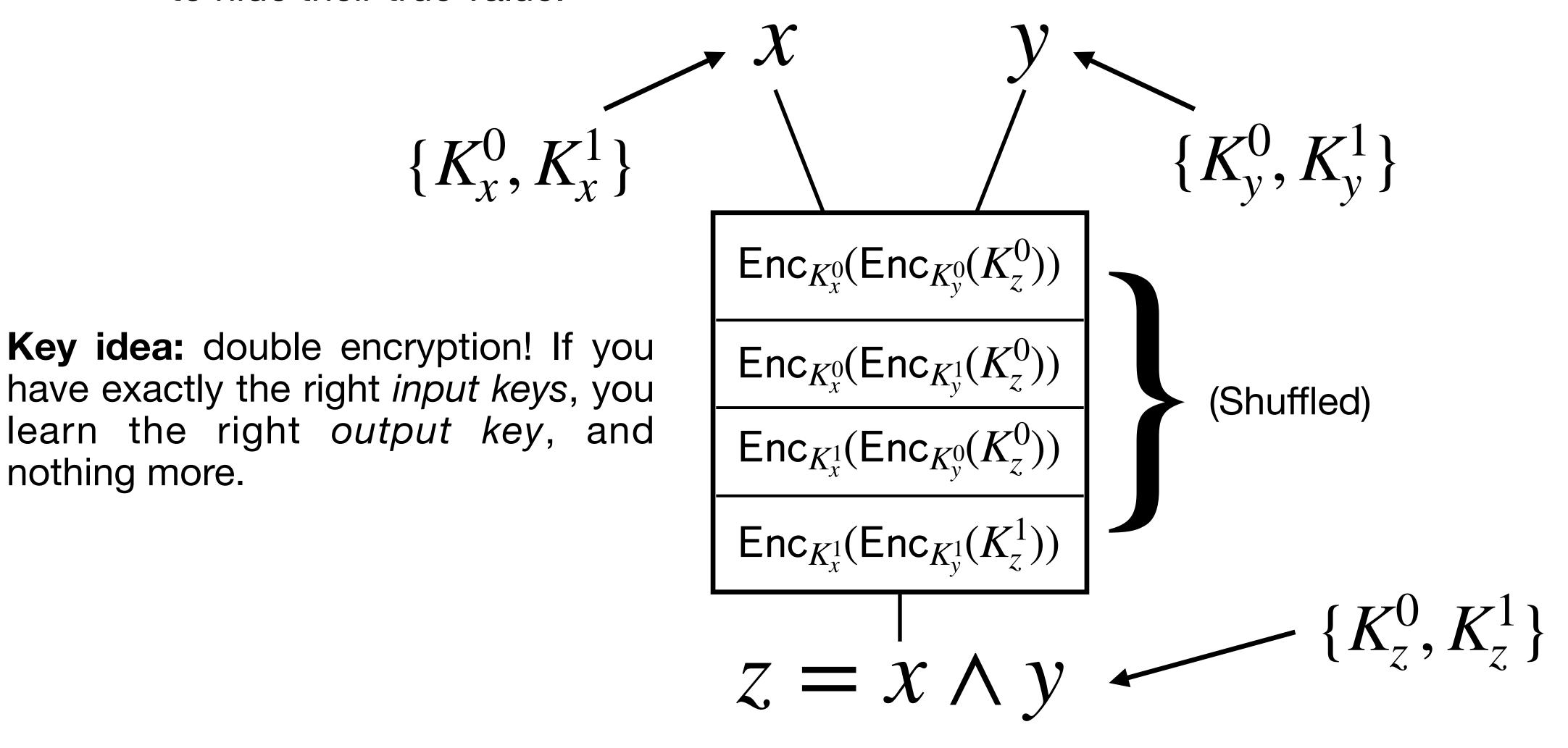
The inputs and outputs are bits, but we will « represent » them using random keys, to hide their true value:



The inputs and outputs are bits, but we will « represent » them using random keys, to hide their true value:



The inputs and outputs are bits, but we will « represent » them using random keys, to hide their true value:



nothing more.

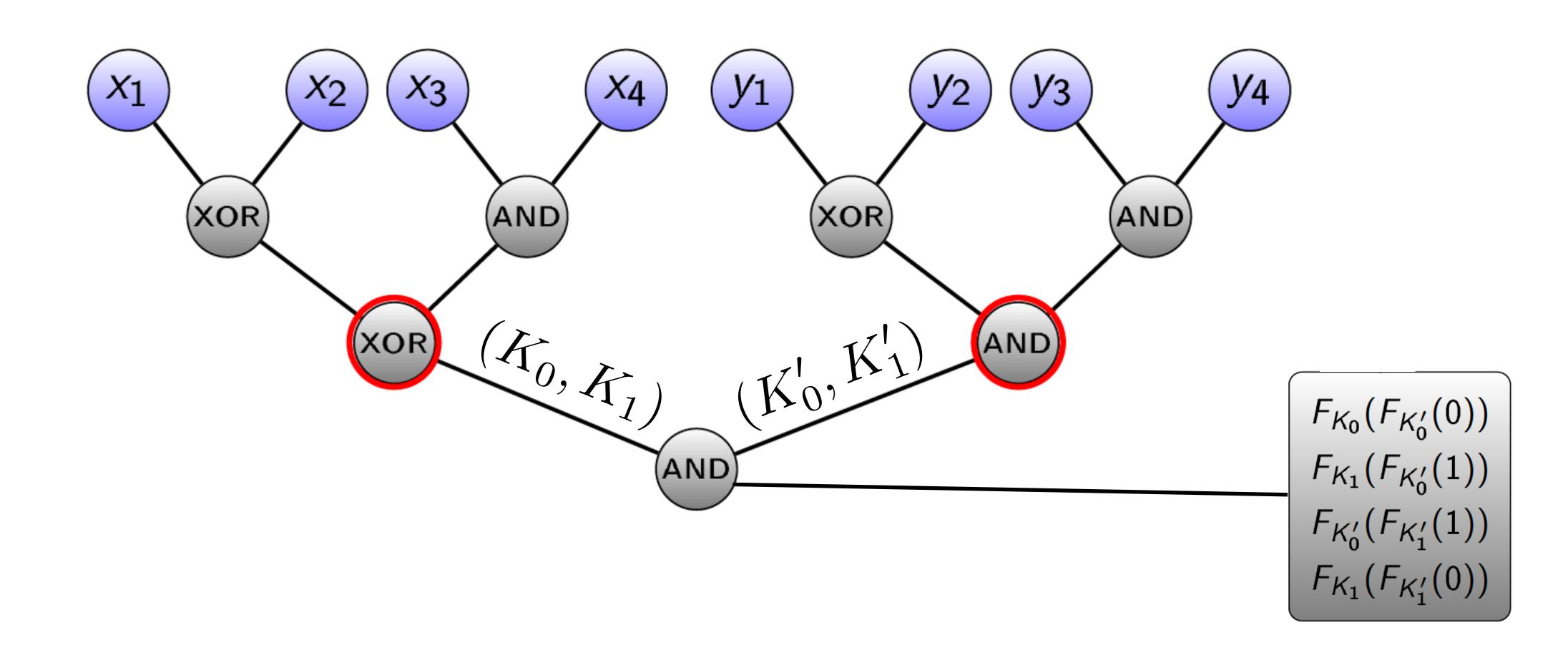
Building Block III: Oblivious Transfer

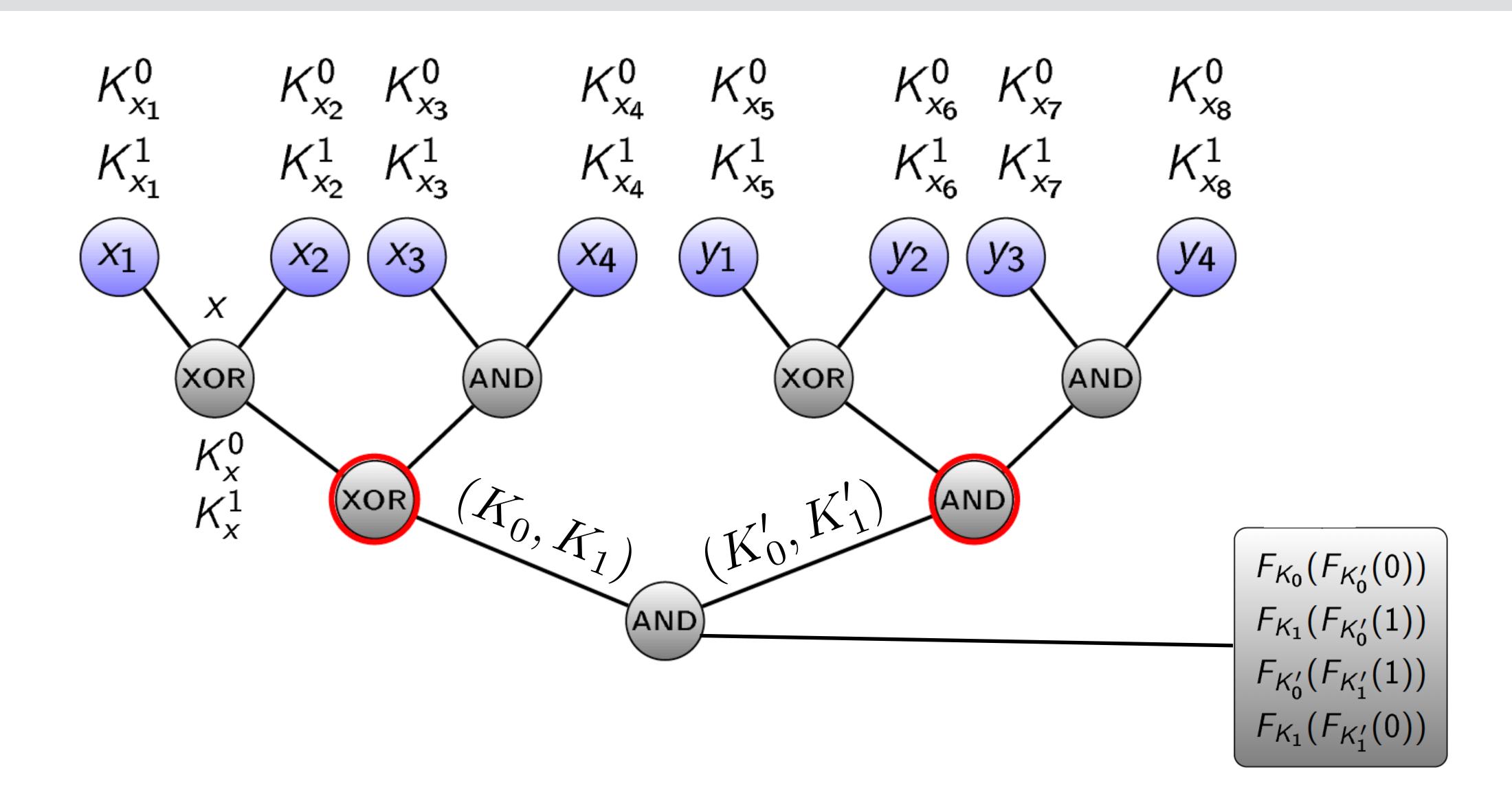


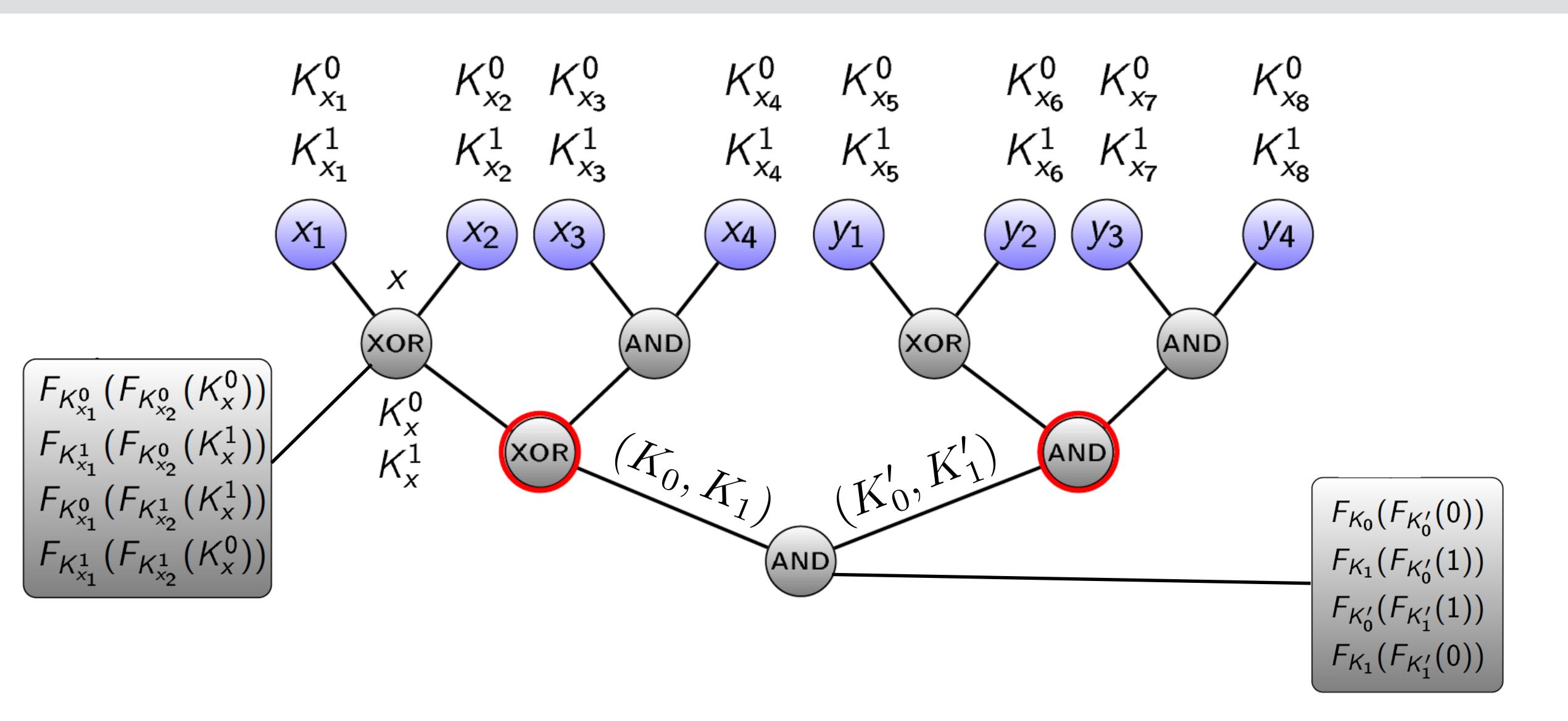
Sender (s_0,s_1)

Receiver
Selection bit b

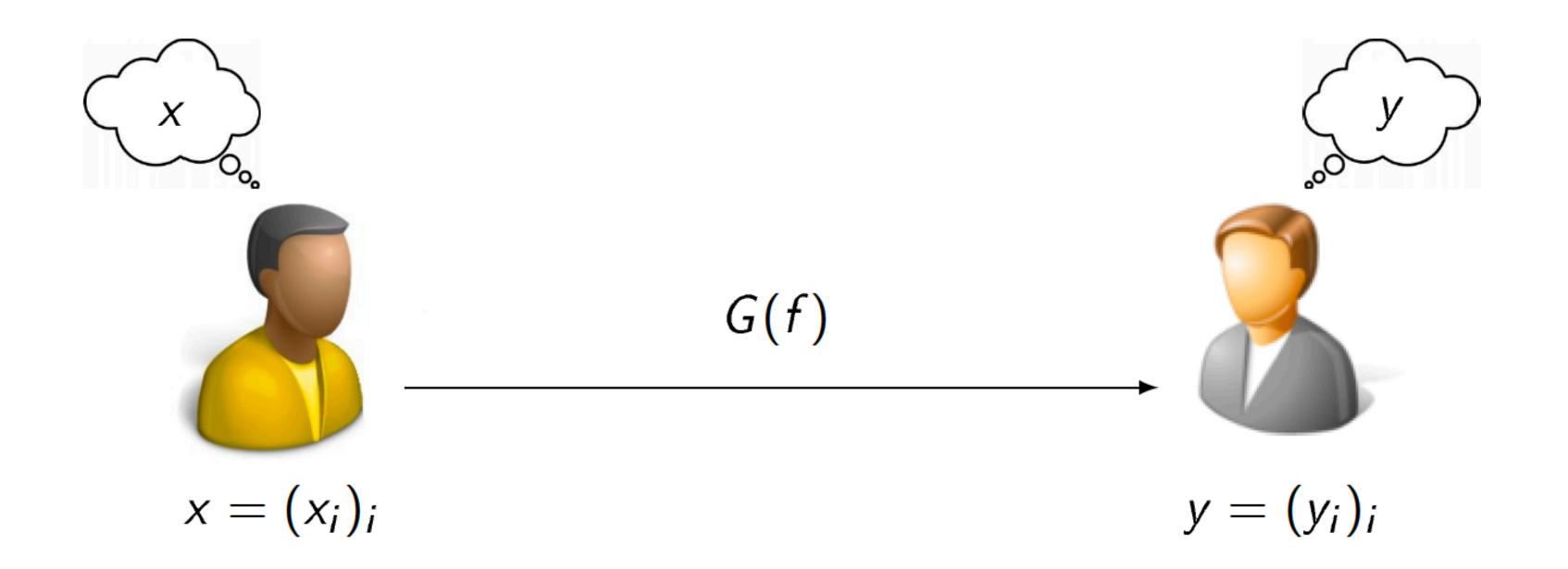
Idea: « encrypting » the gates such that they can only be evaluated given appropriate keys, and while hiding their exact behavior.



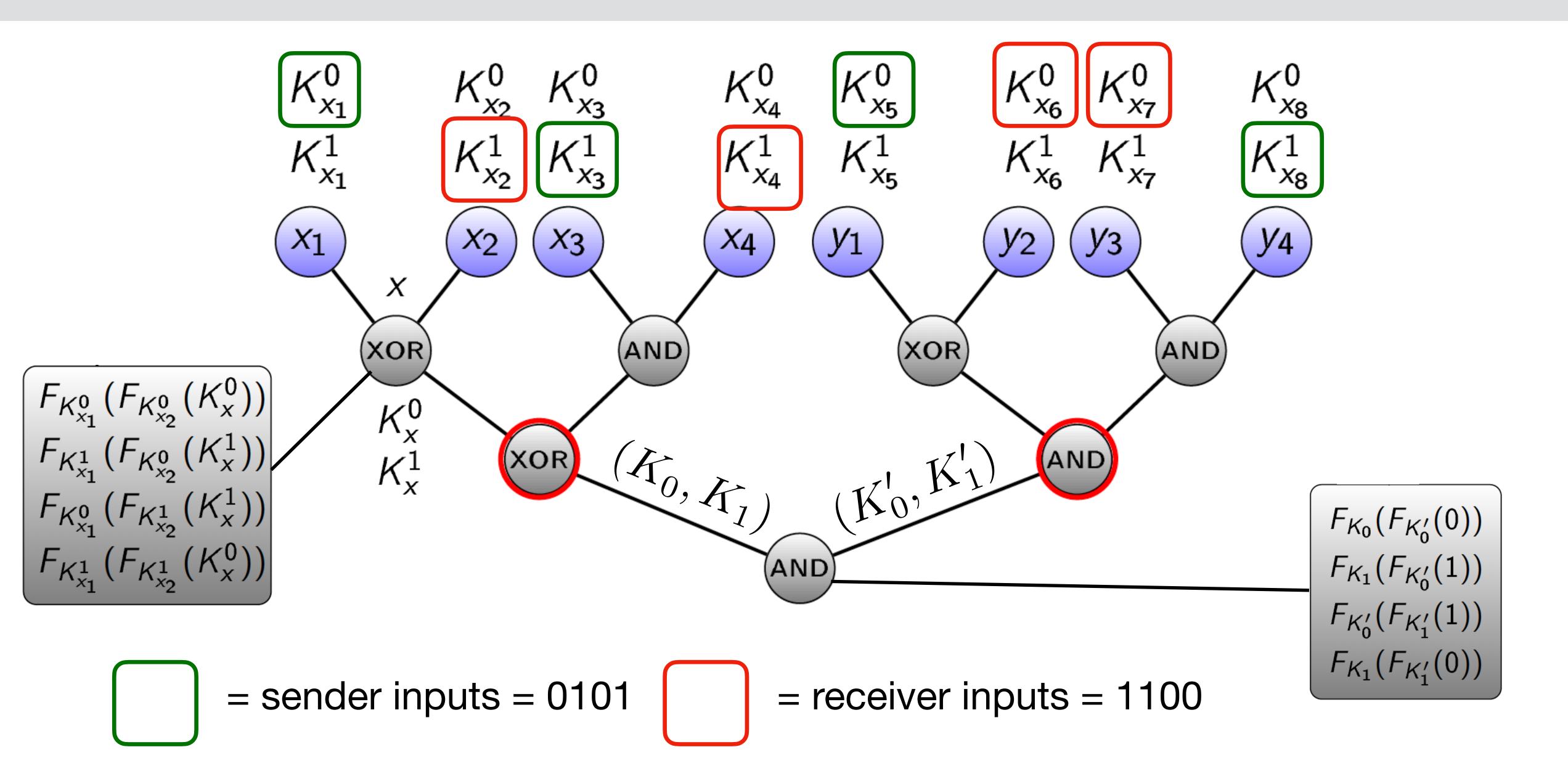


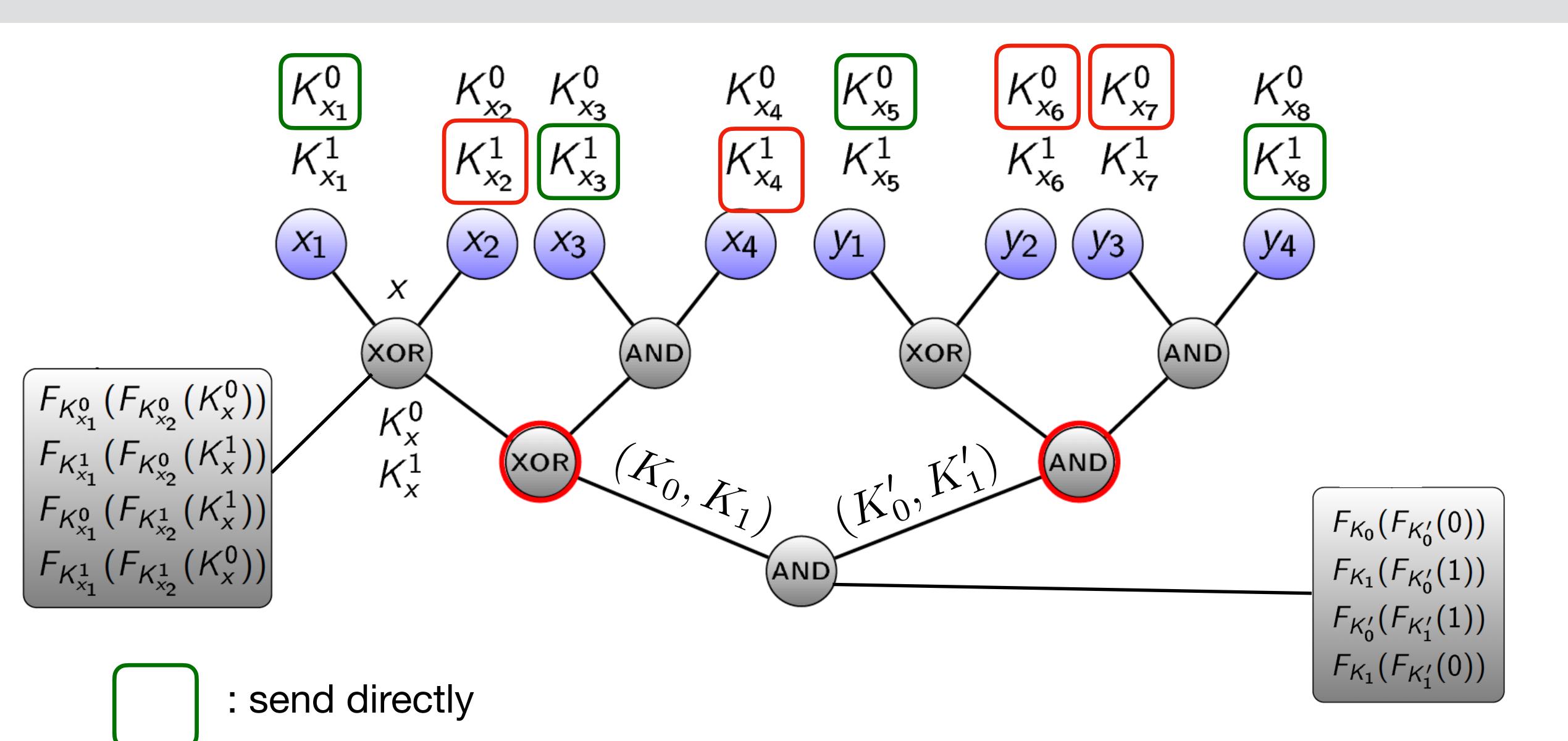


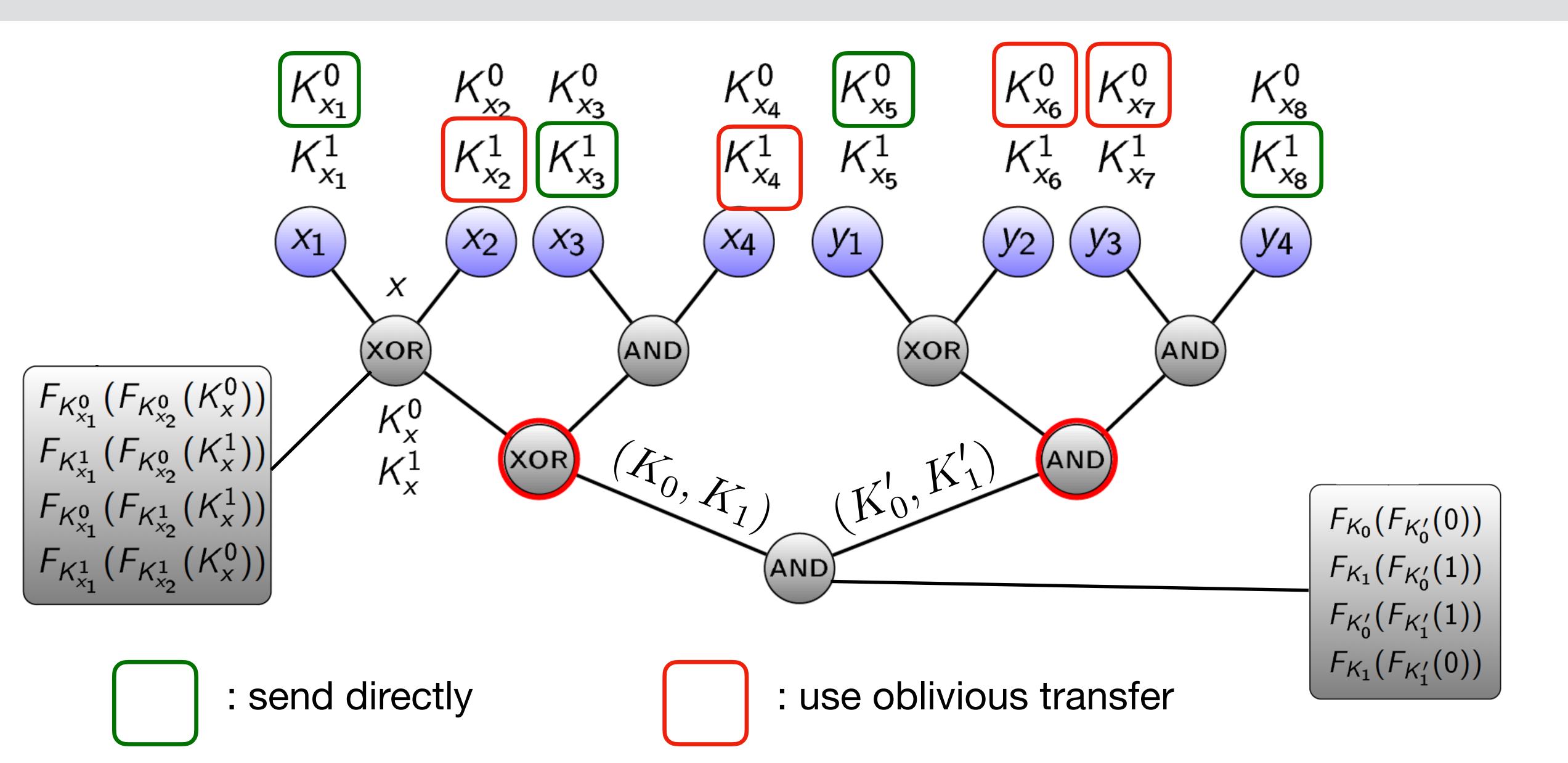
Two-Party Secure Computation for All Functions



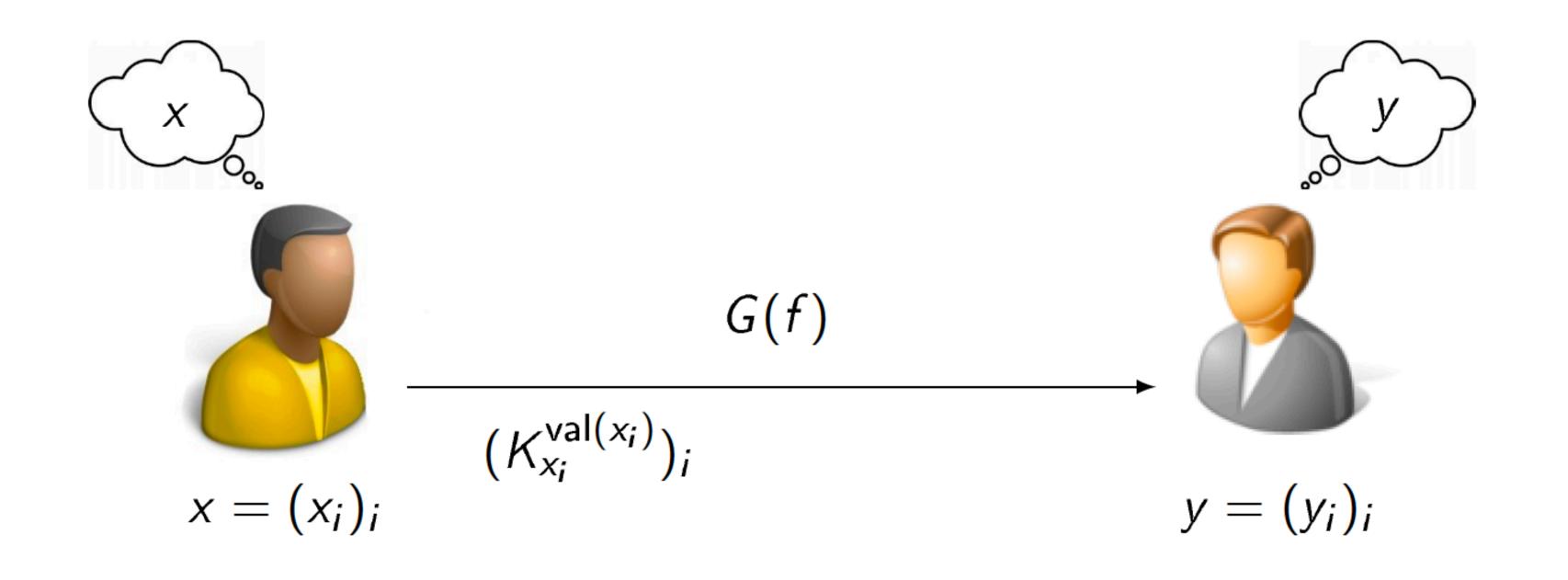
It remains to find a way to transmit exactly the appropriate input keys (and nothing more)



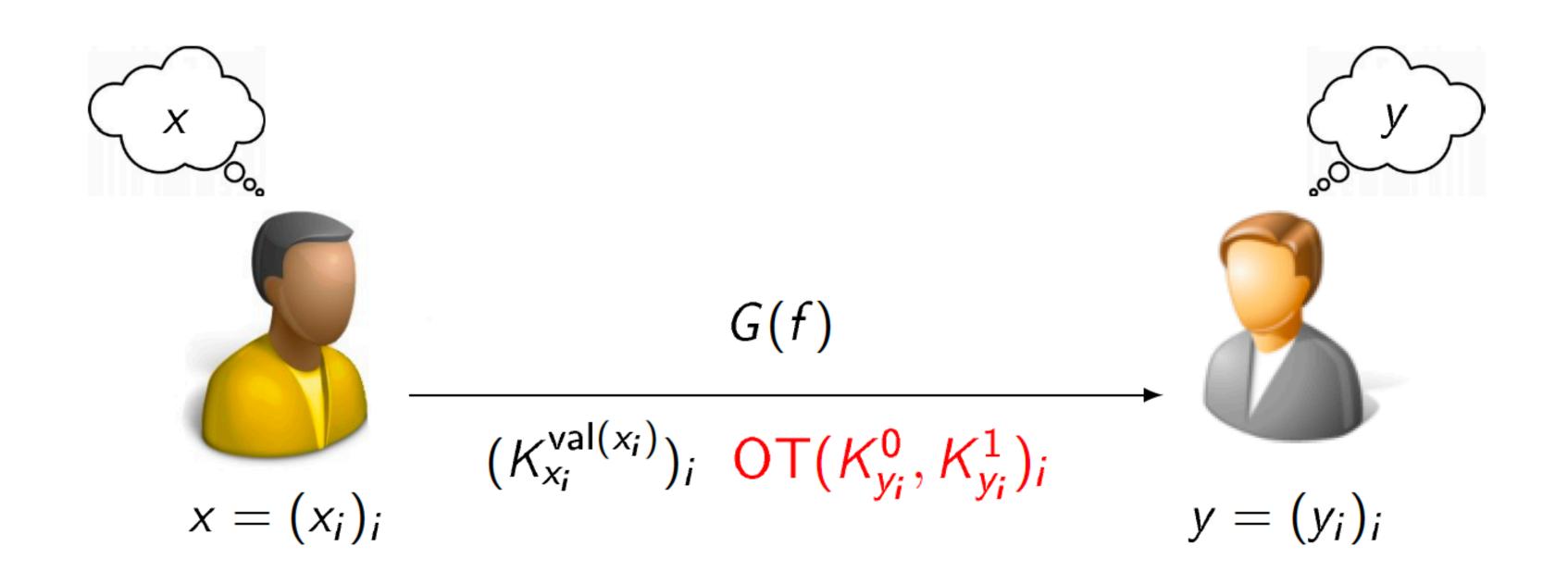




Two-Party Secure Computation for All Functions



Two-Party Secure Computation for All Functions



That's all for today!

If you have any question after the lesson:

couteau@irif.fr