
Foundations of Interactive Proofs
Midterm Homework

We have seen in class that the sumcheck protocol provides an extremely powerful tool for
performing high end interactive proofs: it can handle any statement from PSPACE. In this
homework, we will see that sumchecks, when used correctly, also provide an amazing tool in
the low end regime: namely, for problems in P that can be solved in some polynomial time
T (n), it is sometimes possible to design a sumcheck protocol where a weak client running in
time ≪ T (n) delegates to a more powerful server the task of solving the problem (in time
T (n)). The goal is for the server to prove that it correctly solved the problem using little
communication with the client, such that computing the proof should not be much more
expensive than solving the problem itself.

Rules. You have two weeks to complete the homework. Due date: Wednesday, January
28, 12:45pm. It is a long homework: you don’t necessarily have to answer every question
and can get a good grade without finishing it. Everything is allowed, but I strongly suggest
that you try to the best of your ability to solve the questions by yourself before looking for
resources that provide hints or solutions: you will benefit much more from thinking hard
about it, and it’s a good training for the exam.

Notations. F always denotes a finite field of prime order. Given a field F, F[X1, · · · , Xn] de-
notes the ring of all n-variate polynomials with coefficients over F, F≤d[X1, · · · , Xn] denotes
the subset of n-variate polynomials of individual degree at most d, and F(≤d)[X1, · · · , Xn]
denotes the subset of n-variate polynomials of total degree at most d (a monomial

∏n
i=1 X

di
i

has individual degree d if di ≤ d for all i, and total degree d if
∑

i di = d). We use bold
font (u,v,x) to denote vectors over F, but standard font (u, v, x) to denote elements of F
or bitstrings. We typically identify bitstrings x ∈ {0, 1}n with the vector (x1, · · · , xn) of its
bits. We write [n] for the set {1, 2, · · · , n}. For notational convenience, we always assume
below that n is a power of two, and write m = log2(n). Given a finite set S, we write x← S
to denote that x is sampled uniformly at random from S. We typically identify a polynomial
with the function it represents and view P ∈ F[X1, · · · , Xn] as a function P : Fn → F.

1 Three Lemmas

Lemma 1. Let f : {0, 1}n → F. There exists a unique polynomial Qf ∈ F≤1[X1, · · · , Xn]
such that for all x = (x1, · · · , xn) ∈ {0, 1}n, f(x) = Qf (x).

Question 1. Prove the uniqueness part of Lemma 1.

Lemma 2. Let S ⊆ F be a subset of F. Let Q ∈ F≤d[X] be a nonzero univariate polynomial
of degree at most d. Then

Pr
x←S

[Q(x) = 0] ≤ d

|S|
.

Question 2. Prove Lemma 2 (you can use any standard result about polynomials).

Lemma 3. Let Q ∈ F(≤d)[X1, · · · , Xn] be a nonzero n-variate polynomial of total degree
at most d. Then

Pr
(x1,··· ,xn)←Fn

[Q(x1, · · · , xn) = 0] ≤ d

|F|
.

Question 3. Prove Lemma 3 using Lemma 2.

2

2 Arithmetization of triangle counting: a naive attempt

Consider a simple undirected graph G = ([n], E) (no self-loops) and let A ∈ {0, 1}n×n
denote the adjacency matrix of G, i.e., the matrix A such that Ai,j = 1 if (i, j) ∈ E, and
Ai,j = 0 else. From now on, we are interested in the following task: a weak verifier V is
given a graph G and an integer t ∈ [n3]. The verifier wants to verify the following claim: the
graph G contains exactly t triangles. To that end, V interacts with a powerful but untrusted
prover P. Crucially, the verifier must be optimally efficient : they should run in time O(n2)
(note that up to a constant, if G is dense, this is the time it takes to read the graph, so we
cannot expect a smaller amount of work in general).

Remark

Counting triangles is a ubiquitous problem in computer science and in real-world ap-
plications. In graph analysis, it allows computing the clustering coefficient of a graph,
which measures the “small-world” effect in a social graph (e.g., people who have a friend
in common tend to be friends themselves). It can also be used to test graph properties,
detect frauds or security issues (e.g., in a transaction graph, triangles reveal circular
payments; in social graphs with bots, spikes in the total triangle count correlate with
coordinated bot campains), and the hardness of counting triangles is a core problem in
fine-grained complexity (together with its generalization, counting k-cliques).

Question 4. Write a polynomial PA : Fn → F such that on input x ∈ {0, 1}n, PA(x) = 1
iff (1) the Hamming weight of x is exactly 3, and (2) denoting (i, j, k) the indices of the
ones in x, (i, j), (j, k), and (k, i) all belong to E.

Question 5. Observe that proving the statement “G contains t triangles” reduces to prov-
ing the statement

∑
x∈{0,1}n PA(x) = t. When using the sumcheck protocol to prove this

statement,

– What is the computational complexity of the verifier?
– What is the communication complexity of the protocol?
– What is the number of rounds of the protocol?

Is this a useful protocol? Justify your claims.

3 Arithmetization of triangle counting: a better attempt

The complexity of the naive solution from the previous section is clearly unsatisfying. In-
tuitively, this stem from the choice of arithmetizing the problem with a high-degree poly-
nomial, which yields inefficient sumchecks. In this section, we derive a much better arith-
metization of the triangle counting problem.

Question 6. Prove the following statement: for any (i, j) ∈ [n]2 and k ∈ N, (Ak)i,j is the
total number of paths from i to j of length exactly k in G.

Question 7. Using the above characterization, give a concise formula for the numbers of
triangles in G using powers of A.

(Bonus) Question 8. Can you suggest an alternative protocol to the naive attempt, with
higher communication but much lower computation, and a single round of communication
from P to V (i.e., an MA protocol)? The protocol uses the characterization from question 7
as well as Lemma 2 to reduce verifying the statement to a few matrix-vector products.

Insert Running Title 3

Given a ∈ {0, 1}n, let δa : {0, 1}n → F be defined as δa : x 7→

{
1 if x = a

0 else
.

Question 9. Provide the arithmetization Qδa of δa.

Question 10. Use the polynomials Qδa to prove the existential part of Lemma 1.

Given a matrix M ∈ Fn×n, we now denote M̃ : {0, 1}2m → F the function defined by

M̃(i1, · · · , im, j1, · · · , jm) = Mi,j .

We slightly abuse notations and write QM = QM̃ for the arithmetization of M̃ guaranteed
by Lemma 1.

Question 11. Let (A,B,C) ∈ (Fn×n)3 be three matrices. Prove that for all (u,v) ∈ (Fm)2,

QABC(u,v) =
∑

i1,···im∈{0,1}
j1,···jm∈{0,1}

QA(u, i1, · · · , im)·QB(i1, · · · , im, j1, · · · , jm)·QC(j1, · · · , jm,v).

Question 12. Let S ⊆ ({0, 1}m)2 and t ∈ [n3]. Assume that V knows A,B,C and is allowed
to run in time at most O(n2). Describe the sumcheck protocol to prove statements of the
form ∑

(i,j)∈S

QABC(i, j) = t.

Question 13. What is the maximum degree in each variable of the sumcheck polynomial?
What is the communication complexity of the protocol? And its round complexity? Con-
clude with how to apply this approach to the triangle counting problem.

Question 14. What is the computational complexity of the prover in this triangle counting
protocol? If you cannot characterize it precisely, a reasonable upper bound suffices.

Remark

A more involved analysis and optimization of the prover shows that it can actually be
implemented with optimal complexity (as efficient as running the best-possible algorithm
for counting triangles) up to constants, but this is outside of the scope of this homework.

Question 15. Consider a variant of the previous protocol in which the goal is to prove a
statement of the form “The (i, j)-th entry of Ak is equal to t” (equivalently, the number
of length-k paths from i to j in G is t). What is the verifier complexity, communication
complexity, and round complexity of this variant?

4 An even better attempt

Let k ∈ N be an integer and consider the arithmetization QAk of Ak.

Question 16. Using the same reasoning as for Question 11, write QAk(u,v) using a sum of
terms that depend only on QAk/2 and use this decomposition to describe (at a high-level) a
sumcheck protocol that reduces proving a statement of the form QAk(u,v) = t to proving
two statements of the form QAk/2(ui,vi) = ti for i = 1, 2.

Question 17. Let P : Fn → F denote a multivariate polynomial. Consider a pair of claims
of the form

P (u1,v1) = t1 P (u2,v2) = t2.

4

Using the line polynomials ℓ1, ℓ2 : F → F defined as ℓi(x) = ui + (vi − ui) · x, design a
one-round sumcheck-like protocol that reduces proving the two claims above to proving a
single claim of the form P (u,v) = t.

Question 18. Conclude from Question 16 and Question 17: what is the verifier complexity,
communication complexity, and round complexity of the full improved sumcheck protocol
for proving a statement of the form QAk(u,v) = t? Compare to the protocol of Question 15.

Question 19. Let s be a polynomial, let M denote an s(n)-space Turing Machine, and
let x ∈ {0, 1}n denote an input. Let N = 2c·s(n), where c is a constant such that the
configuration graph GM,x of M on input x has at most 2c·s(n) nodes (see tutorial 2). Suppose
that the configuration graph has a single accepting configuration. Let 1 denote the index of
the starting configuration and N denote the index of the accepting configuration. What is
(AN)1,N? Use the result of Question 18 to provide a new direct proof that IP = PSPACE.

	Foundations of Interactive Proofs Midterm Homework

