Foundations of Interactive Proofs
Tutorial 3

Recall that a commitment scheme over a message space M is a triple of PPT algorithms
(Setup, Commit, Open) with the following template:

— Setup(1™) : on input the security parameter n (in unary), sample public parameters pp (we
assume w.l.o.g. that pp includes 1™).

— Commit(pp,m): on input the public parameters and a message m € M, outputs (as a random-
ized algorithm) a pair (¢, d) where c is called the commitment and d the opening.

— Open(pp,c¢,m,d) : on input the public parameters, a commitment ¢, a message m, and an
opening d, output a bit b € {0,1}.

A commitment scheme must be correct, binding, and hiding:

— Correctness. For all m € M,
Pr[pp + Setup(1™), (¢,d) + Commit(pp,m) : Open(pp,c,m,d) = 1] = 1.
— Binding. For every PPT adversary A,
Pr[mg # m1 A Vb € {0,1}, Open(pp, ¢, mp, dp) = 1] < negl(n),

where probabilities are over the choice of pp < Setup(1™) and (¢, (M4, db)pef0,11) < A(PP)-
— (Strong) hiding. For every stateful PPT adversary A,

| PrlA(co) = 1] — PrlA(cr) = 1]| < negl(n),

where the probabilities are over the choice of (pp, mg, m1) + A(1™) and (cp, dp) < Commit(pp, my)
for b=0,1.

In this tutorial, we will explore constructions of commitment schemes.

1 Commitments from Pseudorandom Generators

A pseudorandom generator is a procedure that produces a long string which looks random (to
any polynomial-time machine) from a short seed. Formally, a function G : {0,1}™ — {0,1}™ is
a pseudorandom generator (PRG) if m = m(n) > n is a polynomially-bounded function and for
every PPT adversary A,

|Prjz + {0,1}™ : A(z) =1] — Pr[s + {0,1}", 2 + G(s) : A(z) = 1]| < negl(n).

Remark

One of the most celebrated results of cryptography is the proof by Hastad, Impagliazzo, Levin,
and Luby that pseudorandom generators are equivalent to one-way functions (functions that are
polytime-computable but hard to invert in polynomial time), an assumption widely regarded
as the weakest and most fundamental assumption in cryptography.

Let G : {0,1}™ — {0,1}3" be a length-tripling PRG. We would like to use this PRG to build
a commitment scheme over M = {0,1}. Consider the following attempt:

— Setup(1™) : set pp =1".
— Commit(pp,m) : if m = 0, sample s + {0,1}" and set ¢ = G(s), d = s. Else, sample
¢+ {0,1}*" and set d = random. Output (c, d).



Question 1. How would one define the Open algorithm for this commitment scheme? Does it
satisfy binding? Does it satisfy hiding?

Question 2. We modify Setup(1") to return pp < {0,1}*". Construct an alternative candidate
commitment scheme where for every m € {0,1}, an opening is a valid preimage by G to some
string.

Question 3. Prove that any adversary that breaks binding can be turned into a distinguisher for
the PRG.

Question 4. Prove that the scheme is statistically hiding, with a cheating probability bounded
by 27™.

2 Commitments from the discrete logarithm assumption

The scheme of the previous section achieves a statistical hiding property. An interesting and non-
trivial question is to build a commitment scheme where hiding is perfect. Building such a scheme
from an arbitrary one-way function is a long-standing open problem. However, one can derive
a perfectly-hiding commitment scheme using number-theoretic assumptions. In this section, we
focus on the discrete logarithm problem: let G be a cyclic group of prime order p with a generator
g. The discrete logarithm problem over G states that for every PPT A,

Priz < Z, : A(¢") = z] < negl(n).

Question 5. The definition of the discrete logarithm problem above is slightly informal and
technically incorrect. Can you fix it?

Question 6. Consider the following attempt at building a perfect commitment scheme over

M=1Z,:

— Setup(1™) : output the description of a group G of order p and a generator g.
— Commit(pp,m) : on input m € Z,, return (c,d) = (¢, L).
— Open(pp, ¢, m,d) : check whether ¢ = ¢™ and output 1 if the check passes.

Can you identify the problem with the above construction?

Question 7. Find a fix to the above construction using another generator h and a blinding term
to properly hide the message m.

Question 8. Prove that any adversary that breaks binding can be turned into an attacker on the
discrete logarithm assumption.

Question 9. Prove that the scheme is perfectly hiding.
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