

Foundations of Interactive Proofs

Tutorial 3

Recall that a *commitment scheme* over a message space \mathcal{M} is a triple of PPT algorithms $(\text{Setup}, \text{Commit}, \text{Open})$ with the following template:

- $\text{Setup}(1^n)$: on input the security parameter n (in unary), sample public parameters pp (we assume w.l.o.g. that pp includes 1^n).
- $\text{Commit}(\text{pp}, m)$: on input the public parameters and a message $m \in \mathcal{M}$, outputs (as a randomized algorithm) a pair (c, d) where c is called the *commitment* and d the *opening*.
- $\text{Open}(\text{pp}, c, m, d)$: on input the public parameters, a commitment c , a message m , and an opening d , output a bit $b \in \{0, 1\}$.

A commitment scheme must be *correct*, *binding*, and *hiding*:

- **Correctness.** For all $m \in \mathcal{M}$,

$$\Pr[\text{pp} \leftarrow \text{Setup}(1^n), (c, d) \leftarrow \text{Commit}(\text{pp}, m) : \text{Open}(\text{pp}, c, m, d) = 1] = 1.$$

- **Binding.** For every PPT adversary \mathcal{A} ,

$$\Pr[m_0 \neq m_1 \wedge \forall b \in \{0, 1\}, \text{Open}(\text{pp}, c, m_b, d_b) = 1] \leq \text{negl}(n),$$

where probabilities are over the choice of $\text{pp} \leftarrow \text{Setup}(1^n)$ and $(c, (m_b, d_b)_{b \in \{0, 1\}}) \leftarrow \mathcal{A}(\text{pp})$.

- **(Strong) hiding.** For every stateful PPT adversary \mathcal{A} ,

$$|\Pr[\mathcal{A}(c_0) = 1] - \Pr[\mathcal{A}(c_1) = 1]| \leq \text{negl}(n),$$

where the probabilities are over the choice of $(\text{pp}, m_0, m_1) \leftarrow \mathcal{A}(1^n)$ and $(c_b, d_b) \leftarrow \text{Commit}(\text{pp}, m_b)$ for $b = 0, 1$.

In this tutorial, we will explore constructions of commitment schemes.

1 Commitments from Pseudorandom Generators

A *pseudorandom generator* is a procedure that produces a long string which *looks* random (to any polynomial-time machine) from a short seed. Formally, a function $G : \{0, 1\}^n \rightarrow \{0, 1\}^m$ is a pseudorandom generator (PRG) if $m = m(n) > n$ is a polynomially-bounded function and for every PPT adversary \mathcal{A} ,

$$|\Pr[x \leftarrow \{0, 1\}^m : \mathcal{A}(x) = 1] - \Pr[s \leftarrow \{0, 1\}^n, x \leftarrow G(s) : \mathcal{A}(x) = 1]| \leq \text{negl}(n).$$

Remark

One of the most celebrated results of cryptography is the proof by Håstad, Impagliazzo, Levin, and Luby that pseudorandom generators are equivalent to one-way functions (functions that are polytime-computable but hard to invert in polynomial time), an assumption widely regarded as the weakest and most fundamental assumption in cryptography.

Let $G : \{0, 1\}^n \rightarrow \{0, 1\}^{3n}$ be a length-tripling PRG. We would like to use this PRG to build a commitment scheme over $\mathcal{M} = \{0, 1\}$. Consider the following attempt:

- $\text{Setup}(1^n)$: set $\text{pp} = 1^n$.
- $\text{Commit}(\text{pp}, m)$: if $m = 0$, sample $s \leftarrow \{0, 1\}^n$ and set $c = G(s)$, $d = s$. Else, sample $c \leftarrow \{0, 1\}^{3n}$ and set $d = \text{random}$. Output (c, d) .

Question 1. How would one define the `Open` algorithm for this commitment scheme? Does it satisfy binding? Does it satisfy hiding?

Question 2. We modify $\text{Setup}(1^n)$ to return $\text{pp} \leftarrow \{0,1\}^{3n}$. Construct an alternative candidate commitment scheme where for every $m \in \{0,1\}$, an opening is a valid preimage by G to *some* string.

Question 3. Prove that any adversary that breaks binding can be turned into a distinguisher for the PRG.

Question 4. Prove that the scheme is statistically hiding, with a cheating probability bounded by 2^{-n} .

2 Commitments from the discrete logarithm assumption

The scheme of the previous section achieves a statistical hiding property. An interesting and non-trivial question is to build a commitment scheme where hiding is *perfect*. Building such a scheme from an arbitrary one-way function is a long-standing open problem. However, one can derive a perfectly-hiding commitment scheme using number-theoretic assumptions. In this section, we focus on the *discrete logarithm problem*: let \mathbb{G} be a cyclic group of prime order p with a generator g . The discrete logarithm problem over \mathbb{G} states that for every PPT \mathcal{A} ,

$$\Pr[x \leftarrow \mathbb{Z}_p : \mathcal{A}(g^x) = x] \leq \text{negl}(n).$$

Question 5. The definition of the discrete logarithm problem above is slightly informal and technically incorrect. Can you fix it?

Question 6. Consider the following attempt at building a perfect commitment scheme over $\mathcal{M} = \mathbb{Z}_p$:

- $\text{Setup}(1^n)$: output the description of a group \mathbb{G} of order p and a generator g .
- $\text{Commit}(\text{pp}, m)$: on input $m \in \mathbb{Z}_p$, return $(c, d) = (g^m, \perp)$.
- $\text{Open}(\text{pp}, c, m, d)$: check whether $c = g^m$ and output 1 if the check passes.

Can you identify the problem with the above construction?

Question 7. Find a fix to the above construction using another generator h and a *blinding term* to properly hide the message m .

Question 8. Prove that any adversary that breaks binding can be turned into an attacker on the discrete logarithm assumption.

Question 9. Prove that the scheme is perfectly hiding.